
Decision Trees 

 

One disadvantage of many classification techniques is that the classification process is 

difficult to understand.  For a nearest neighbor or bayesian classifier, comparing dozens 

or hundreds of features determines the final class.  A user that wants to know why 

sometime was classified the way it was is forced to examine these same dozens or 

hundreds of features.  Similarly, mathematical classification techniques are often difficult 

for humans to understand. 

 

However, humans do easily understand and accept decision rules.  These are rules in the 

format of “If X is true and Y is false, then conclude class 1.”  Typically, continuous 

variables are split up into a range, so that something like age could be checked through “If 

age>60 and heart attack=true then…”. 

 

For decision trees we’ll try to build up a set of conjunctive decision rules.  In this format, 

we only have AND’s within each rule, but each rule exists within an IF-THEN-ELSE 

structure.  For example, the following set of rules solves the XOR problem: 

 

 If x=0 then 

  If y=0 then class=0 

  Else class = 1 

 Else if x=1 then 

  If y=0 then class=1 

  Else class = 0 

 

Note that the order that the rules are executed is important.   Also, the rules cover all of 

the classes; this can make a large decision tree difficult to understand. 

 

Graphically, decision trees can be interpreted as drawing rectangles in the decision space.  

The degree to which we can effectively draw the rectangles determines the classification 

accuracy. 

 

 

 

 

 

 

 

 

 

 

 

Here is an example of a binary decision tree.  A decision tree consists of nodes for the 

current feature to examine, and branches for the true/false result of comparing that feature 
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Class 0 

Class 0 



to a test case.  A terminal node denotes the class.  It is convention to have the false branch 

on the left and the true branch right. 

 

When a new case is presented, we check to see if X is true or false.  If X is false, we go to 

the left and conclude that the case is C1.  If X is true, we move to the right and now test 

Y.  If Y is false, we conclude C2.  If Y is true, we conclude C1.  In this example, two 

rules cover C1 while one rule covers C2. 

 

Decision trees are simple to apply; however they are more complicated to build.  We 

would like to find the smallest tree that perfectly classifies our training data.  However, 

we often have to settle for less.  It is easy to find a tree that will cover our sample without 

any errors, but more difficult to find a tree that performs well on test data.  This means 

that you shouldn’t be too impressed with yourself if the error on the training data is zero; 

the error on the test set may be much worse (nearest neighbor after all gets 0 training 

error). 

 

 

 

Building The Tree 

 

To build our tree, the idea is very simple.  Start with some feature to test, say X.  For now 

let’s put off until later how we decided to pick X.  Now, split up the set of cases into two 

sets, one where X is true and the other where X is false.   If any of these sets contains 

cases entirely from one class, then make that branch a terminal node labeled with that 

class.  Otherwise, repeat the process with the newly formed set(s).   As an alternate 

method, nodes may become terminal when the size is below some threshold (say, 5), in 

which case we just assign that node to be the most prevalent class.  This technique is 

necessary if we reach a point where there is no discriminating feature to separate the 

classes. 

 

Ideally we would like to find a small tree; this will give us rules that are easy to 

understand and the performance will actually be better (more on this later).  To do this, 

we want to split based upon the most predictive features first. 

 

To determine the most predictive feature, a heuristic search is employed.  This heuristic 

attempts to reduce the degree of randomness, or “impurity” of the current feature.  We’ll 
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apply the heuristic for all our feature tests, looking for the best one.  For example, a 

feature that splits the data into two sets, where both sets have a 50% mixture of cases in 

C1 and C2, then the impurity or randomness is high.  However, if we find a feature that 

splits the data into two sets where one set is 100% C1 and the other set is 100% C2 the 

the impurity or randomness is 0.   We want to minimize the impurity to find the right 

feature to select. 

 

A common heuristic to use is the entropy function.  The entropy is defined as: 

 

The entropy of a particular state is the negative sum over all the classes of the probability 

of each class multiplied by the log of the probability.  For example, let’s say that we have: 

 

2 classes, C1 and C2 

100 cases 

50 cases are in each class 

Thus the probability of each class, P1 and P2 are 0.5. 

 The entropy of this node = -[ (0.5)(lg 0.5) + (0.5)(lg 0.5) ]   = 1 

 

Our algorithm will pick the feature or test that reduces the entropy the greatest.  This can 

be achieved by maximizing the following equation: 

 

  

The probabilities of branching left or right are simply the percentage of cases in node N 

that branch left or right. For all of our feature tests, we would calculate Delta-Entropy and 

pick the feature that has the greatest change in entropy.   

 

For example, let’s say that we are at a node with an entropy of 1 as calculated above.  One 

feature test may result in 50% of the cases going left and 50% going right.  Of the 50% 

going left, all are in C1.  This means the entropy of Node(Left) = 0.  Similarly, of the 50% 

going right, all are in C2.   This means the entropy of Node(Right)=0.  The change in 

entropy is then 1 if we selected this feature: 
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If we tried another feature it might result in a less clear separation: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that there are many other heuristic functions in use; the gini function, LaPlace 

heuristic, and statistical measures have also been proposed. 

 

Shrinking The Tree 

 

Decision trees to seem to operate according to Ockham’s Razor, which says that the most 

likely hypothesis tends to be the simplest one that is consistent with all observations.  We 

see this show up with large trees vs. small trees.  Smaller trees that are consistent with the 

data tend to perform better than the large trees. 

 

 # of Terminals vs. Error Rates (for Iris Data problem) 
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In the graph above, the apparent error is the error rate on the training examples.  Initially, 

as the number of nodes in the tree is small, it is considerably lower than the true error 

rate.  As we increase the tree size to 3, the apparent error and the true error are smallest.  

But then as we increase past three, the true error actually increases, while our apparent 

error decreases. 

 

We would actually do better with a tree of size 3 than a tree of size 9 (the tree that gives 

us 0 error on the training examples).  How do we find the subtree that yields the best 

performance? 

 

The most straightforward method is to prune branches off the decision tree.  Working 

backward from the bottom of an induced tree, the subtree starting at each nonterminal 

node is examined.  If the error rate on the test cases improves by pruning it, then the 

subtree is removed.  Although this technique has the subtle flaw of “indirectly training on 

the test cases” it performs well on large samples (say >1000 test cases).   

 

There are several other methods to pruning trees; one technique involves lookahead 

during tree generation.   Others involve heuristics to determine which branch to prune or 

using cross-validation to get a better estimate on good prunes. 

 

The decision tree algorithm presented here is the basis for an algorithm named ID3.  Ross 

Quinlan designed the use of the entropy function in 1979.   More recent decision tree 

algorithms include C4.5 and C5.0, a commercial product.  

 

Web demo: 

 

http://www.cs.ualberta.ca/~aixplore/learning/DecisionTrees/ 

 

Rule Induction – Decision Lists 

 

Decision trees have become one of the “standard” algorithms for machine learning in the 

AI community.  However, the rules produced by decision trees are not only ordered (we 

can’t jump in the middle of the tree to start the evaluation) but cover all classes.  For large 

trees, these rules can still be extremely difficult for people to understand.  

 

An easier form to understand is a direct set of rules, in disjunctive normal form: 

 

1. if X then C1 

2. if X and Y then C2 

3. if NOT X and Z and Y then C3 

4. if B then C2 

 

In DNF, we have only AND’s within each rule, but an OR of all rules. 

 



Although relaxing the mutual exclusivity requirement of decision trees appears minor, 

developing a learning system for this representation is actually much more difficult.  One 

immediate problem that arises is what to do if two rules fire for the same input, but 

predict different classes.  The common procedure is to predict the most common class in 

this case.  In general, we have problems if we just OR together all of our rules. 

 

The problem with OR’ing together rules is that, surprisingly, we might end up lowering 

our performance!  Consider if you have two rules and 1000 cases.  Rule 1 is activated 

(covers) 100 cases, and is correct on 90 of them.  Rule 2 also covers 100 cases, and it is 

correct on 90 of them.  What happens when we OR these rules together?  In the best case, 

the 90 correct cases are different, but the incorrect cases are identical.  The accuracy is 

now (90+90) / (90 + 90 + 10) = 0.95.    However, in the worst case the two rules are 

correct on the SAME cases but wrong on different cases.  The combined classifier is now 

90 / (90+10+10) = 0.82.    

 

The end result is that we need to be careful inducing the rules, and that in some cases 

decision trees may be a better way to go. 

 

C%2 Induction Algorithm 

 

CN2 is one unordered rule induction algorithm designed by Peter Clark.  There are many 

other algorithms; all operate under the same general principles.  A somewhat simplified 

version is presented here. 

 

The idea of CN2 and other rule induction algorithms is to search the space of decision 

rules from the general to the specific.  We’ll employ a beam search to determine what 

rules to generate; this search space is huge.  If we only have 3 features, X, Y, and Z, then 

we could generate the following possible rules: 

 

 If X then… 

 If X and Y then… 

 If X and Y and Z then… 

 If X and Z then … 

 If Y then … 

 If Y and Z then … 

 If Z then… 

 

The number of rules grows exponentially, 2
n
-1.   There are even more rules if we consider 

NOT X, NOT Y, etc.  With features that are typically in the tens or hundreds, search 

through this space can be extremely difficult.  Essentially we will be searching through 

this space of possible rules for the best rule on the training data. 

 

There are three procedures in the algorithm: 

 

CN2Unordered(allexamples, allclasses) 



 Ruleset � {} 

 For each class in allclasses 

  Generate rules by CN2ForOneClass(allexamples, class) 

  Add rules to ruleset 

 Return ruleset 

 

CN2ForOneClass(examples, class) 

 Rules � {} 

 Repeat 

  Bestcond � FindBestCondition(examples, class) 

  If bestcond <> null then 

   Add the rule “IF bestcond THEN PREDICT class” 

   Remove from examples all cases in class covered by bestcond 

 Until bestcond = null 

 Return rules 

 

In the decision tree algorithm, we essentially removed all examples covered by bestcond 

whether or not they were in a particular class.  In the rule induction algorithm, it is 

important that we keep negative examples of the rule around so that future rules stand out 

from the negatives.  We must remove the positive examples to prevent us from finding 

the same rule again.  The task remains to implement the FindBestCond routine: 

 

FindBestCondition(examples, class) 

 MGC � true  ‘ most general condition 

 Star � MGC 

 Newstar � {} 

 Bestcond � null 

 While Star is not empty  (or loopcount < MAXCONJUNCTS) 

  For each rule R in Star 

   For each possible feature F  

    R’ � specialization of Rule formed by adding F as an 

     Extra conjunct to Rule (i.e. Rule’ = Rule AND F) 

     Removing null conditions (i.e. A AND NOT A) 

     Removing redundancies (i.e. A AND A) 

     And previously generated rules. 

    If EntropyTest(R’,class) better than  

EntropyTest(Bestcond, class) 

     Bestcond � R’ 

    Add R’ to Newstar 

    If size(NewStar) > MAXRULESIZE then 

     Remove worst in Newstar  

until Size=MAXRULESIZE 

   Star � Newstar 

 Return Bestcond 

 



Initially, FindBestCondition will start with Star containing only the default “true” rule. To 

this we add specializations by testing the rules with one feature.  For example if our 

features are X, Y and Z, then on the first pass we would generate “IF X then Class”, “IF Y 

then Class” and “IF Z then Class”.  All of these rules would be tested to see which has the 

lower entropy (i.e. performance on the training set; other metrics can also be used, such as 

the error rate using this rule).   

 

Next, we keep track of the best rule so far and only remember the MAXRULESIZE best 

rules.  If MAXRULESIZE = 2, then we might only keep the rules “IF X then Class” and 

“IF Y then Class”.  By limiting the rule size, we enforce a narrow “beam” in which we 

are searching through the rule space.  To the top rules, we specialize them further, 

AND’ing each rule with all features.  We would now have the rules: 

 IF X and Y then class 

 IF X and Z then class 

 IF Y and Z then class 

 

The process repeats.  The next loop we would generate rules with three conjuncts, until 

we run out of features or reach our MAXCONJUNCTS limit.  This routine is quite 

compute intensive, especially for a large number of features and sample cases.   

 

The CN2 algorithm has been tested on many sample machine learning tasks (heart disease 

test data, plant classification, etc.)  In many cases it not only produced more readable 

rules, but also outperformed decision trees. 

 


