
1

Introduction to Artificial Life and

Genetic Algorithms

CS405

What is Artificial Life?

• Sub-Discipline of Complex Adaptive Systems

• Roots from Artificial Intelligence

– Bottom-Up rather than Top-Down

• Studies application of computational techniques to
biological phenomena

• Studies application of biological techniques to
computational problems

• Question: Can we build computers that are
intelligent and alive?

2

Some Requistes for Life

• Autonomy

• Metabolism

• Survival Instinct

• Self-Reproduction

• Evolution

• Adaptation

Let’s focus on Self-Reproduction, Evolution, and Adaptation

Self-Reproduction in Computers

• An old mathematical problem, to write a program that can

reproduce (e.g., print out a copy of itself) leads to infinite

regress.

• Attempt in a hypothetical programming language:

Program copy

 print(“Program copy”)

 print(“ print(“Program copy”)”)

 print(“ print(“ print(“Program copy”)”)”)

3

Solution to Infinite Regress

• Solution in the von Neumann computer
architecture. He also described a “self-
reproducing automaton”

• Basic idea

– Computer program stored in computer memory

– A program has access to the memory where it is stored

– Let’s say we have an instruction MEM that is the
location in memory of the instruction currently being
executed

A Working Self-Reproducing

Program

1 Program copy

2 L = MEM +1

3 print(“Program copy”)

4 print(“L = MEM + 1”)

5 LOOP until line[L] = “end”

6 print(line[L])

7 L=L+1

8 print(“end”)

9 end

4

Self-Reproducing Program

• Information used two ways

– As instructions to execute

– As data for the instructions

• Could make an analogy with DNA

– DNA strings of nucleotides

– DNA encodes the enzymes that effect copying:

splitting the double helix, copying each strand

with RNA, etc.

Evolution in Computers

• Genetic Algorithms – most widely known

work by John Holland

• Based on Darwinian Evolution

– In a competitive environment, strongest, “most

fit” of a species survive, weak die

– Survivors pass their good genes on to offspring

– Occasional mutation

5

Evolution in Computers

• Same idea in computers

– Population of computer program / solution

treated like the critters above, typically encoded

as a bit string

– Survival Instinct – have computer programs

compete with one another in some

environment, evolve with mutation and sexual

recombination

GA’s for Computer Problems

Population of critters  Population of computer solutions

Surviving in environment  Solving computer problem

Fitness measure in nature  Fitness measure solving computer

 problem

Fit individuals life, poor die  Play God and kill computer solutions

 that do poorly, keep those that do well.

 i.e. “breed” the best solutions typically

 Fitness Proportionate Reduction

Pass genes along via mating  Pass genes along through

 computer mating

Repeat process, getting more and more fit individuals

in each generation.

Usually represent computer solutions as bit strings.

6

The Simple Genetic Algorithm

1. Generate an initial random population of M
individuals (i.e. programs)

2. Repeat for N generations

1. Calculate a numeric fitness for each individual

2. Repeat until there are M individuals in the new
population

1. Choose two parents from the current population
probabilistically based on fitness (i.e. those with a higher
fitness are more likely to be selected)

2. Cross them over at random points, i.e. generate children based
on parents (note external copy routine)

3. Mutate with some small probability

4. Put offspring into the new population

Crossover
Typically use bit strings, but could use other structures

Bit Strings: Genotype representing some phenotype

 Individual 1: 001010001 Individual 2: 100110110

 New child : 100110001 has characteristics of

 both parents, hopefully

 better than before

Bit string can represent whatever we want for our particular

problem; solution to a complex equation, logic problem,

classification of some data, aesthetic art, music, etc.

7

Simple example: Find MAX of a function

To keep it simple, use y=x so bigger X is better

Chromosome Representation

Let's make our individuals just be numbers along the X axis,

represented as bit strings, and initialize them randomly:

Individual 1 : 000000000

Individual 2 : 001010001

Individual 3 : 100111111

….

Individual N : 110101101

Fitness function: Y value of each solution. This is the fitness

function. Note that even for NP complete problems, we can often

compute a fitness (remember that solutions for NP Complete

problems can be verified in Polynomial time).

Say for some parents we pick: 100111111 and 110101101

8

Crossover

Crossover: Randomly select crossover point, and swap code

 100111111 and 110101101

 Individual 1: 100111111 Individual 2: 110101101

 New child : 110101111 has characteristics of

 both parents, hopefully

 better than before

 Or could have done:

 Individual 1: 100111111 Individual 2: 110101101

 New child: 100111101 ; not better in this case

Mutation

Mutation: Just randomly flip some bits ; low probability of doing this

 Individual: 011100101

 New: 111100101

Mutation keeps the gene pool active and helps prevent stagnation.

9

Demos

• Online: Minimum of a function

– http://www.obitko.com/tutorials/genetic-

algorithms

– NP-Complete

– NP-Complete problems are good candidates for
applying GA’s

• Problem space too large to solve exhaustively

• Multiple “agents” (each individual in the
population) provides a good way to probe the
landscape of the problem space

• Generally not guaranteed to solve the problem
optimally

Second Example : TSP

10

• Formal definition for the TSP

– Start with a graph G, composed of edges E and

vertices V, e.g. the following has 5 nodes, 7 edges,

and costs associated with each edge:

– Find a loop (tour) that visits each node exactly once

and whose total cost (sum of the edges) is the

minimum possible

3
15

6

1 7

3

5

• Easy on the graph shown on the previous slide; becomes
harder as the number of nodes and edges increases

• Adding two new edges results in five new paths to
examine

• For a fully connected graph with n nodes, n! loops
possible
– Impractical to search them all for more than about 25 nodes

• Excluding degenerate graphs, an exponential number of
loops possible in terms of the number of nodes/edges

3
15

6

1 7

3

5

4

3

11

• Guaranteed optimal solution to TSP

– Evaluate all loops

• Approximation Algorithms

– May achieve optimal solution but not guaranteed

– Nearest Neighbor

– Find minimum cost of edges to connect each node

then turn into a loop

– Heuristic approaches, simulated annealing

– Genetic Algorithm

• A genetic algorithm approach

– Randomly generate a population of agents
• Each agent represents an entire solution, i.e. a random ordering of each

node representing a loop

– Given nodes 1-6, we might generate 423651 to represent the loop of
visiting 4 first, then 2, then 3, then 6, then 5, then 1, then back to 4

– In a fully connected graph we can select any ordering, but in a partially
connected graph we must ensure only valid loops are generated

– Assign each agent a fitness value
• Fitness is just the sum of the edges in the loop; lower is more fit

– Evolve a new, hopefully better, generation of the same number
of agents

• Select two parents randomly, but higher probability of selection if
better fitness

• New generation formed by crossover and mutation

12

• Crossover

– Must combine parents in a way that preserves valid
loops

– Typical cross method, but invalid for this problem

 Parent 1 = 423651 Parent 2 = 156234

 Child 1 = 423234 Child 2 = 156651

– Use a form of order-preserving crossover:

 Parent 1 = 423651 Parent 2 = 156234

 Child 1 = 123654

• Copy positions over directly from one parent, fill in from
left to right from other parent if not already in the child

• Mutation

– Randomly swap nodes (may or may not be
neighbors)

• Traveling Salesman Applet:

 Generates solutions using a genetic algorithm

 http://www.generation5.org/jdk/demos/tspApplet.

html

Fun example: Smart Rockets

 http://www.blprnt.com/smartrockets/

Eaters:

 http://math.hws.edu/xJava/GA/

13

Why does this work?

• How does a GA differ from random search?
– Pick best individuals and save their “good” properties, not random ones

• What information is contained in the strings and their fitness
values, that allows us to direct the search towards improved
solutions?
– Similarities among the strings with high fitness value suggest a relationship

between those similarities and good solutions.

• A schema is a similarity template describing a subset of strings with
similarities at certain string positions.

• Crossover leaves a schema unaffected if it doesn't cut the schema.

• Mutation leaves a schema unaffected with high probability (since mutation has
a low probability).

• Highly-fit, short schema (called building blocks) are propagated from
generation to generation with high probability.

– Competing schemata are replicated exponentially according to their fitness
value.

– Good schemata rapidly dominate bad ones.

Advantages of GA’s

Easy to implement

Easy to adapt to many problems

Work surprisingly well

Many variations are possible

 (elitism, niche populations, hybrid w/other techniques)

Less likely to get stuck in a local minima due to randomness

14

Dangers of GA’s

Need diverse genetic pool, or we can get inbreeding :

 stagnant population base

No guarantee that children will be better than parents

 could be worse, could lose a super individual

 elitism- when we save the best individual

Other Problems Addressed By

GA’s

1. Classification Systems - Plant disease, health, credit risk, etc.

2. Scheduling Systems

3. Learning the boolean multiplexer.

 S0 S1 D0 D1 D2 D3

 0 0 X

 0 1 X

 1 0 X

 1 1 X

15

Boolean Multiplexer

System was able to learn the 11 function boolean multiplexer from

training data.

 Hard problem for humans! Ex:

 00101010101 1

 11010101001 0

 …

Genetic Programming

Invented by John Koza of Stanford University in the late 80’s.

What if instead of evolving bit strings representing solutions,

instead we directly evolve computer programs to solve our task?

Programs are typically represented in LISP. Here are some

example Lisp expressions:

(Or (Not D1) (And D0 D1))

(Or (Or D1 (Not D0))

 (And (Not D0) (Not D1))

16

Code Trees

D1

NOT

D0 D1

AND

OR

D1

D0

NOT

OR

D0

NOT

D1

NOT

AND

OR

Crossover - Swap Tree Segments

D0

NOT

D1

NOT

AND

D0 D1

AND

OR

D1

D0

NOT

OR

D1

NOT

OR

17

Example Applications

• Santa-Fe Trail Problem

Fitness: How much

food collected

Individual program

on the previous

slide generated on

7th generation

solved the problem

completely

Example GP Problem
Examples: Artificial Ant Problem. Given a set environment

with a trail of food, goal is to get as most of the food as

possible in a given timeframe

Functions: IF-FOOD, PROGN

Terminals: ADVANCE, TURN LEFT, TURN RIGHT

After 51 generations with population of 1000, following individual

emerged that got all the food:

(If-Food (Advance)

 (Progn (turn-right)

 (If-Food (Advance) (Turn-Left))

 (Progn (Turn-left)

 (If-Food (Advance) (Turn-Right))

 (Advance))))

18

Ants - Emergent Collective

Behavior

Fitness: Food

collected by all ants

and returned to nest

in given time period

Programs evolved to

demonstrate

collective intelligent

behavior, lay

pheromone trails

Other GA/GP Applications

• GA’s and GP has been used to solve many
problems

– Numerical optimization

– Circuit Design

– Factory Scheduling

– Network Optimization

– Robot Navigation

– Economic Forecasting

– Police Sketches

– Flocking/Swarming Behavior

– Evolutionary Art, Music

– Windows NT?

19

Other Demos

• Rule finding for boolean multiplexer

• Ant problem?

• Plants?

Extra Material

20

Where we are going...

Simple mechanism to

evolve interesting

computer-generated

plants within the

virtual environment.

Can play with applet

from web page;

http://www.math.uaa

.alaska.edu/~afkjm

L-Systems

• Plants are based on L-Systems

– Introduced by Lindenmayer in 1968 to simulate the

development of multi-cellular organisms

• Simplified “Turtle-Logo” version implemented in

Wildwood

– Based on a context-free grammar

– String re-writing rules

• Recursively replace productions on RHS via transformation

rules, ignoring productions at end.

• A=FfAFF Order(1) : A=FfFF

• A=FfFfAFFFF Order(2) : A=FfFfFFF

• A=FfFfFfAFFFFFF Order(3) : A=FfFfFfFFFFFF

21

L-Systems Terminals
• Turtle-graphics interpretation of grammar

terminals. Assume a pen is attached to the belly

of a turtle.
– F : Move forward and draw a line segment

– f : Move forward without drawing a segment

– - : Rotate left R degrees

– + : Rotate right R degrees

– [: Push current angle/position on stack

–] : Pop and return to state of last push

• R set to 30 degrees

• Push and Pop comprise a bracketed L-System

necessary for branching behavior

L-System Grammar Example

Initially, turtle pointing up.

Initial grammar: A=F[-F][F][+F]A

Order(1): F[-F][F][+F]

One rewrite rule:

 A=F[-F][F][+F]F[-F][F][+F]A

Order(2):

 F[-F][F][+F]F[-F][F][+F]

Two rewrite rules:

 A=F[-F][F][+F]F[-F][F][+F]F[-F][F][+F]A

Order(2):

 F[-F][F][+F]F[-F][F][+F]F[-F][F][+F]

Extremely simple formalism for generating complex structures

22

Genetic Algorithm Components
• Apply the traditional genetic algorithm paradigm

to the evolution of L-System plants

• Use a single grammar rule as the chromosome

• Mutation: Randomly generates new grammar

string and inserts into random location

• Crossover: Randomly swap subsections of the

grammar string: Parent1: A=F[-fF++F]fAfFA

Parent2: A=FFAFFFAFFF

Child1: A=F[-fFAFFF]fAfFA

Child2: A=FFAFFF++F

Also computes valid sequences that preserve bracket matching

Genetic Operations

• Random String Generation

– Rule length selected randomly between 4-20

– Terms from set {“f”,”F”,”[“,”]”,”+”, ”-“, “A”} selected

at random with equal probability

– probability of a “]” increases proportionally with

respect to the remaining slots in the string and the

number of right brackets necessary to balance the rule.

• Fitness Function

– User-determined, e.g. genetic art, hand-bred

– Height / Width

23

Hand-Bred Plants
• Humans assign fitness values

• Mutation = 0.05, Popsize=10, Order=4

• Fitness Proportionate Reproduction

Generation 0:

Not very plant-like

Stick: A=Ff-F

Weed: A=F+F[+-A]Ff-AFFAF

Ball: A=F+f+AAFF+FA

Hand-Bred Plants
• More plant-like individuals generated as

evolution progresses.
– Gen 3 : A=FF[F[A+F[-FF-AFF]]]

– Gen 5 : A=FF[F[A+F[-FF-+F[-FF-FFA[-F[]A[]]]AFF]]]F

24

Final Plant

• Stopped at generation 7

– Gen 7: A= FF[F-[F[A+F[-[A][]]]][A+F[-F-A[]]]]F

