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Introduction to Artificial Life and 

Genetic Algorithms 

 

CS405 

What is Artificial Life? 

• Sub-Discipline of Complex Adaptive Systems 

• Roots from Artificial Intelligence 

– Bottom-Up rather than Top-Down 

 

• Studies application of computational techniques to 
biological phenomena 

• Studies application of biological techniques to 
computational problems 

• Question: Can we build computers that are 
intelligent and alive? 
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Some Requistes for Life 

• Autonomy 

• Metabolism 

• Survival Instinct 

• Self-Reproduction 

• Evolution 

• Adaptation 

Let’s focus on Self-Reproduction, Evolution, and Adaptation 

Self-Reproduction in Computers 

• An old mathematical problem, to write a program that can 

reproduce (e.g., print out a copy of itself) leads to infinite 

regress. 

• Attempt in a hypothetical programming language: 

Program copy 

    print(“Program copy”) 

    print(“      print(“Program copy”)”) 

    print(“      print(“    print(“Program copy”)”)”) 
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Solution to Infinite Regress 

• Solution in the von Neumann computer 
architecture.  He also described a “self-
reproducing automaton” 

• Basic idea 

– Computer program stored in computer memory 

– A program has access to the memory where it is stored 

– Let’s say we have an instruction MEM that is the 
location in memory of the instruction currently being 
executed 

A Working Self-Reproducing 

Program 

1 Program copy 

2    L = MEM +1 

3  print(“Program copy”) 

4  print(“L = MEM + 1”) 

5  LOOP until line[L] = “end” 

6   print(line[L]) 

7   L=L+1 

8  print(“end”) 

9 end  
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Self-Reproducing Program 

• Information used two ways 

– As instructions to execute 

– As data for the instructions 

• Could make an analogy with DNA 

– DNA strings of nucleotides  

– DNA encodes the enzymes that effect copying: 

splitting the double helix, copying each strand 

with RNA, etc. 

Evolution in Computers 

• Genetic Algorithms – most widely known 

work by John Holland 

• Based on Darwinian Evolution 

– In a competitive environment, strongest, “most 

fit” of a species survive, weak die 

– Survivors pass their good genes on to offspring 

– Occasional mutation 
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Evolution in Computers 

• Same idea in computers 

– Population of computer program / solution 

treated like the critters above, typically encoded 

as a bit string 

– Survival Instinct – have computer programs 

compete with one another in some 

environment, evolve with mutation and sexual 

recombination 

 

GA’s for Computer Problems 

Population of critters  Population of computer solutions 

Surviving in environment  Solving computer problem 

Fitness measure in nature  Fitness measure solving computer  

              problem 

Fit individuals life, poor die  Play God and kill computer solutions 

    that do poorly, keep those that do well. 

    i.e. “breed” the best solutions typically  

    Fitness Proportionate Reduction 

Pass genes along via mating  Pass genes along through  

    computer mating 

Repeat process, getting more and more fit individuals  

in each generation. 

Usually represent computer solutions as bit strings. 
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The Simple Genetic Algorithm 

1. Generate an initial random population of M 
individuals (i.e. programs) 

2. Repeat for N generations 

1. Calculate a numeric fitness for each individual 

2. Repeat until there are M individuals in the new 
population 

1. Choose two parents from the current population 
probabilistically based on fitness (i.e. those with a higher 
fitness are more likely to be selected) 

2. Cross them over at random points, i.e. generate children based 
on parents (note external copy routine) 

3. Mutate with some small probability 

4. Put offspring into the new population 

Crossover 
Typically use bit strings, but could use other structures 

Bit Strings:  Genotype representing some phenotype 

 Individual 1: 001010001 Individual 2: 100110110 

 New child :  100110001 has characteristics of 

     both parents, hopefully  

     better than before 

Bit string can represent whatever we want for our particular 

problem; solution to a complex equation, logic problem, 

classification of some data, aesthetic art, music, etc. 
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Simple example: Find MAX of a function 

To keep it simple, use y=x so bigger X is better 

Chromosome Representation 

Let's make our individuals just be numbers along the X axis,  

represented as bit strings, and initialize them randomly: 

 

Individual 1  : 000000000 

Individual 2 : 001010001 

Individual 3 : 100111111 

…. 

Individual N : 110101101 

 

Fitness function:  Y value of each solution.  This is the fitness  

function.  Note that even for NP complete problems, we can often  

compute a fitness (remember that solutions for NP Complete  

problems can be verified in Polynomial time). 

Say for some parents we pick:    100111111  and 110101101 
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Crossover 

Crossover:  Randomly select crossover point, and swap code 

  100111111  and 110101101 

 Individual 1: 100111111 Individual 2: 110101101 

 

 New child :  110101111 has characteristics of 

     both parents, hopefully  

     better than before 

 Or could have done: 

 

 Individual 1: 100111111 Individual 2: 110101101 

 

 New child: 100111101 ; not better in this case 

 

  

Mutation 

Mutation: Just randomly flip some bits ; low probability of doing this 

  Individual:  011100101 

  New:  111100101 

 

 

Mutation keeps the gene pool active and helps prevent stagnation. 
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Demos 

• Online:  Minimum of a function 

– http://www.obitko.com/tutorials/genetic-

algorithms 

 

– NP-Complete 

– NP-Complete problems are good candidates for 
applying GA’s 

• Problem space too large to solve exhaustively 

• Multiple “agents” (each individual in the 
population) provides a good way to probe the 
landscape of the problem space 

• Generally not guaranteed to solve the problem 
optimally 

 

 

Second Example : TSP 
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• Formal definition for the TSP 

– Start with a graph G, composed of edges E and 

vertices V, e.g. the following has 5 nodes, 7 edges, 

and costs associated with each edge: 

 

 

 

 

 

– Find a loop (tour) that visits each node exactly once 

and whose total cost (sum of the edges) is the 

minimum possible 

 

3 
15 
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• Easy on the graph shown on the previous slide; becomes 
harder as the number of nodes and edges increases 

 

 

 

 

 

 

• Adding two new edges results in five new paths to 
examine 

• For a fully connected graph with n nodes, n! loops 
possible 
– Impractical to search them all for more than about 25 nodes 

• Excluding degenerate graphs, an exponential number of 
loops possible in terms of the number of nodes/edges 
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• Guaranteed optimal solution to TSP 

– Evaluate all loops 

• Approximation Algorithms  

– May achieve optimal solution but not guaranteed 

– Nearest Neighbor 

– Find minimum cost of edges to connect each node 

then turn into a loop 

– Heuristic approaches, simulated annealing 

– Genetic Algorithm 

 

• A genetic algorithm approach 

– Randomly generate a population of agents 
• Each agent represents an entire solution, i.e. a random ordering of each 

node representing a loop 

– Given nodes 1-6, we might generate 423651 to represent the loop of 
visiting 4 first, then 2, then 3, then 6, then 5, then 1, then back to 4 

– In a fully connected graph we can select any ordering, but in a partially 
connected graph we must ensure only valid loops are generated 

– Assign each agent a fitness value 
• Fitness is just the sum of the edges in the loop;  lower is more fit 

– Evolve a new, hopefully better, generation of the same number 
of agents 

• Select two parents randomly, but higher probability of selection if 
better fitness 

• New generation formed by crossover and mutation 

 



12 

• Crossover 

– Must combine parents in a way that preserves valid 
loops 

– Typical cross method, but invalid for this problem 

 Parent 1 = 423651  Parent 2 = 156234 

 Child 1 = 423234 Child 2 = 156651 

– Use a form of order-preserving crossover: 

 Parent 1 = 423651  Parent 2 = 156234 

 Child 1 =  123654  

• Copy positions over directly from one parent, fill in from 
left to right from other parent if not already in the child 

• Mutation 

– Randomly swap nodes (may or may not be 
neighbors) 

• Traveling Salesman Applet:  

  

 Generates solutions using a genetic algorithm 

 http://www.generation5.org/jdk/demos/tspApplet.

html 

 

Fun example: Smart Rockets 

 http://www.blprnt.com/smartrockets/ 

 

Eaters:  

   http://math.hws.edu/xJava/GA/ 
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Why does this work? 

• How does a GA differ from random search? 
– Pick best individuals and save their “good” properties, not random ones  

• What information is contained in the strings and their fitness 
values, that allows us to direct the search towards improved 
solutions?  
– Similarities among the strings with high fitness value suggest a relationship 

between those similarities and good solutions.  

• A schema is a similarity template describing a subset of strings with 
similarities at certain string positions.  

• Crossover leaves a schema unaffected if it doesn't cut the schema.  

• Mutation leaves a schema unaffected with high probability (since mutation has 
a low probability).  

• Highly-fit, short schema (called building blocks) are propagated from 
generation to generation with high probability.  

– Competing schemata are replicated exponentially according to their fitness 
value.  

– Good schemata rapidly dominate bad ones.  

 

Advantages of GA’s 

Easy to implement 

Easy to adapt to many problems 

Work surprisingly well 

Many variations are possible  

 (elitism, niche populations, hybrid w/other techniques) 

Less likely to get stuck in a local minima due to randomness 
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Dangers of GA’s 

Need diverse genetic pool, or we can get inbreeding :  

 stagnant population base  

 

No guarantee that children will be better than parents 

  could be worse, could lose a super individual 

 

 elitism-  when we save the best individual 
 

Other Problems Addressed By 

GA’s 

1.  Classification Systems -  Plant disease, health, credit risk, etc. 

2.  Scheduling Systems 

3.  Learning the boolean multiplexer.    

 

 S0 S1   D0 D1 D2 D3 

 0 0   X 

 0 1    X 

 1 0     X 

 1 1      X 
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Boolean Multiplexer 

System was able to learn the 11 function boolean multiplexer from 

training data. 

 

 Hard problem for humans!  Ex: 

 

 00101010101  1 

 11010101001  0 

 … 

 

 

Genetic Programming 

Invented by John Koza of Stanford University in the late 80’s. 

 

What if instead of evolving bit strings representing solutions,  

instead we directly evolve computer programs to solve our task?  

 

Programs are typically represented in LISP.  Here are some  

example Lisp expressions: 

 

(Or (Not D1) (And D0 D1)) 

 

(Or (Or D1 (Not D0)) 

       (And (Not D0) (Not D1)) 
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Code Trees 

D1

NOT

D0 D1

AND

OR

D1

D0

NOT

OR

D0

NOT

D1

NOT

AND

OR

Crossover - Swap Tree Segments 

D0

NOT

D1

NOT

AND

D0 D1

AND

OR

D1

D0

NOT

OR

D1

NOT

OR
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Example Applications 

• Santa-Fe Trail Problem 
                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

 

Fitness: How much 

food collected 

 

Individual program 

on the previous 

slide generated on 

7th generation 

solved the problem 

completely  

Example GP Problem 
Examples: Artificial Ant Problem.  Given a set environment  

with a trail of food, goal is to get as most of the food as  

possible in a given timeframe 

 

Functions: IF-FOOD, PROGN 

Terminals: ADVANCE, TURN LEFT, TURN RIGHT 

 

After 51 generations with population of 1000, following individual  

emerged that got all the food: 

(If-Food (Advance) 

  (Progn (turn-right) 

  (If-Food (Advance) (Turn-Left)) 

  (Progn (Turn-left) 

   (If-Food (Advance) (Turn-Right)) 

    (Advance)))) 
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Ants - Emergent Collective 

Behavior 
                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

                         

 

Fitness:  Food 

collected by all ants 

and returned to nest 

in given time period 

 

Programs evolved to 

demonstrate 

collective intelligent 

behavior, lay 

pheromone trails 

Other GA/GP Applications 

• GA’s and GP has been used to solve many 
problems 

– Numerical optimization 

– Circuit Design 

– Factory Scheduling 

– Network Optimization 

– Robot Navigation 

– Economic Forecasting 

– Police Sketches 

– Flocking/Swarming Behavior 

– Evolutionary Art, Music 

– Windows NT? 
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Other Demos 

• Rule finding for boolean multiplexer 

• Ant problem? 

• Plants? 

Extra Material 
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Where we are going... 

Simple mechanism to 

evolve interesting 

computer-generated 

plants within the 

virtual environment. 

 

 

Can play with applet 

from web page; 

http://www.math.uaa 

.alaska.edu/~afkjm 

L-Systems 

• Plants are based on L-Systems 

– Introduced by Lindenmayer in 1968 to simulate the 

development of multi-cellular organisms 

• Simplified “Turtle-Logo” version implemented in 

Wildwood 

– Based on a context-free grammar 

– String re-writing rules 

• Recursively replace productions on RHS via transformation 

rules, ignoring productions at end. 

• A=FfAFF  Order(1) : A=FfFF 

• A=FfFfAFFFF  Order(2) : A=FfFfFFF 

• A=FfFfFfAFFFFFF  Order(3) : A=FfFfFfFFFFFF 
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L-Systems Terminals 
• Turtle-graphics interpretation of grammar 

terminals.  Assume a pen is attached to the belly 

of a turtle. 
–   F :  Move forward and draw a line segment 

–   f  :  Move forward without drawing a segment 

–   - :  Rotate left R degrees 

–   + :  Rotate right R degrees 

–   [  :  Push current angle/position on stack 

–   ]  :  Pop and return to state of last push 

• R set to 30 degrees 

• Push and Pop comprise a bracketed L-System 

necessary for branching behavior 

L-System Grammar Example 

Initially, turtle pointing up. 

Initial grammar:  A=F[-F][F][+F]A 

Order(1):   F[-F][F][+F] 

One rewrite rule:   

  A=F[-F][F][+F]F[-F][F][+F]A 

Order(2):    

  F[-F][F][+F]F[-F][F][+F] 

Two rewrite rules:   

  A=F[-F][F][+F]F[-F][F][+F]F[-F][F][+F]A 

Order(2):    

  F[-F][F][+F]F[-F][F][+F]F[-F][F][+F] 

Extremely simple formalism for generating complex structures 
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Genetic Algorithm Components 
• Apply the traditional genetic algorithm paradigm 

to the evolution of L-System plants 

• Use a single grammar rule as the chromosome 

• Mutation: Randomly generates new grammar 

string and inserts into random location 

• Crossover: Randomly swap subsections of the 

grammar string: Parent1: A=F[-fF++F]fAfFA 

Parent2: A=FFAFFFAFFF 

 

Child1: A=F[-fFAFFF]fAfFA 

Child2: A=FFAFFF++F 

 

Also computes valid sequences that preserve bracket matching 

Genetic Operations 

• Random String Generation 

– Rule length selected randomly between 4-20 

– Terms from set {“f”,”F”,”[“,”]”,”+”, ”-“, “A”} selected 

at random with equal probability 

– probability of a “]” increases proportionally with 

respect to the remaining slots in the string and the 

number of right brackets necessary to balance the rule.  

• Fitness Function 

– User-determined, e.g. genetic art, hand-bred 

– Height / Width 
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Hand-Bred Plants 
• Humans assign fitness values 

• Mutation = 0.05, Popsize=10, Order=4 

• Fitness Proportionate Reproduction 

Generation 0: 

Not very plant-like 

 

 

Stick: A=Ff-F 

Weed: A=F+F[+-A]Ff-AFFAF 

Ball:  A=F+f+AAFF+FA 

Hand-Bred Plants 
• More plant-like individuals generated as 

evolution progresses. 
– Gen 3 : A=FF[F[A+F[-FF-AFF]]] 

– Gen 5 : A=FF[F[A+F[-FF-+F[-FF-FFA[-F[]A[]]]AFF]]]F 
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Final Plant 

• Stopped at generation 7 

– Gen 7: A= FF[F-[F[A+F[-[A][]]]][A+F[-F-A[]]]]F 


