
1

Introduction to Functional Programming in Java 8

Java 8 is the current version of Java that was released in

March, 2014. While there are many new features in Java 8, the core

addition is functional programming with lambda expressions. In this

section we describe the benefits of functional programming and give

a few examples of the programming style. Most of the features in

Java 8 are more appropriate for an advanced Java text but the

concepts apply to material we have discussed, particularly when we

are working with collections.

 A lambda expression is a nameless function. In functional

programming, a function is the same thing as a method. Related

concepts include closures, anonymous functions, and function

literals. As a nameless function, a lambda expression is essentially a

little chunk of code that you can pass around as data but have it

treated like a function with parameters. Lambda expressions provide

a neat way to implement a class that normally has only one function

and to make it easy to modify methods on the spot rather than go

through the work of defining a method to perform a specialized task.

Additionally, lambda expressions help Java parallelize itself to run

more efficiently on multi-core or parallel machines. For example,

normally we will process elements in an ArrayList by creating a for

loop that accesses each element one by one. This is considered

external access to the loop. In contrast, with lambda expressions we

can internally iterate through the ArrayList by providing a function

that tells Java how to process each element. The Java Virtual

Machine can then parallelize the operating by farming computation

on the elements to different processors.

 The format to define a lambda expression looks like this:

parameters -> body

The arrow separates the parameters from the body. In many cases the

body is short and just a single line of code. If it were longer, than a

traditional method may make more sense. Here is a lambda

expression with a function that takes no parameters and returns the

number 68:

() -> { return 68; }

Here is a lambda expression that returns the sum of two integers x

and y:

(int x, int y) -> { return (x+y); }

In many cases Java can infer the type of the parameters, in which

case we can leave the data type off. We can also simply provide an

expression on the right side and it automatically becomes the return

value without requiring the keyword return. The following is

equivalent to the previous example:

(x, y) -> x+y

As an example to motivate the use of lambda functions,

consider the case where we want a class to implement the Runnable

interface. If you recall from our lecture on threads, the Runnable

interface has only one method to implement, the run() method.

Unlike our threaded case, in our simple example we won’t be using

threads so we can directly invoke the run() method rather than the

start() method of a thread. The following code illustrates the

traditional way we would create an object that implements Runnable:

public class OldStyleRunnable implements

 Runnable

{

 public void run()

 {

System.out.println

 ("Running in a class!");

 }

}

public class NotLambda1

{

 public static void main(String[] args)

 {

 OldStyleRunnable r0 = new

 OldStyleRunnable();

 r0.run(); // Not running in a thread

 }

}

 3

Sample Dialogue:

 Running in a class!

This is fine for one object, but what if we wanted multiple

objects, and we wanted different code in the run() method for each?

Then we would have to explicitly create a separate class for each

object. An alternative is to use an anonymous class in which we

declare and instantiate the class in a single statement:

public class NotLambda2

{

 public static void main(String[] args)

 {

 // Anonymous class that overrides

 // the run() method

 Runnable r = new Runnable()

 {

 public void run(){

 System.out.println

 ("In an anonymous class!");

 }

 };

 r.run();

 }

}

Sample Dialogue:

 In an anonymous class!

This is an improvement over the first version because we can

now create unique Runnable objects with the run() method of our

choice without the need to assign a name to derived Runnable class.

However, lambda functions allow us to assign a function to a

Runnable object in a single line:

public class LambdaRunnable

{

 public static void main(String[] args)

 {

 Runnable r =

 () -> System.out.println

 ("In a lambda expression!");

 r.run();

 }

}

Sample Dialogue:

 In a lambda expression!

The lambda format is the simplest of all and lets us directly

insert the method where needed. The same concept applies to

implementing an actionListener for a GUI component. For

example, instead of this old style code that uses an anonymous class:

button.addActionListener(new ActionListener()

{

 public void actionPerformed(ActionEvent e)

 {

 System.out.println("You clicked me!");

 }

});

we can now use the much shorter and easier to read:

button.addActionListener

 (e -> System.out.println

 ("You clicked me!"));

Java’s lambda expressions are particularly useful when

applied to collections. Three common operations that we typically

perform are to filter, map, or reduce the collection. In this section we

give a short example of each.

 Let’s start with the concept of a filter. Consider the following

code, which creates a list of doubles:

ArrayList<Double> nums = new ArrayList<>();

nums.add(3.5);

nums.add(56.3);

nums.add(81.1);

nums.add(4.8);

If we only want to output the values in the array that are over 50 then

in traditional Java-style (external processing) we would make a loop

with an if statement:

for (int i = 0; i < nums.size(); i++)

 if (nums.get(i) > 50)

 System.out.println(nums.get(i));

Using Java 8’s lambda expressions we can do the same thing by

creating a stream of the elements in the ArrayList and then

 5

filtering them. This is accomplished through a sequence of function

calls:

nums.stream().filter((Double val) -> val >

50).forEach((Double val) ->

System.out.println(val));

For readability purposes it is common to put each function call on a

separate line:

nums.stream()

 .filter((Double val) -> val > 50)

 .forEach((Double val) ->

System.out.println(val));

The stream() method creates a stream which generates a list that we

can iterate once. Not to be confused with data streams, this new type

of stream can be accessed in parallel or sequentially. In our case we

are only using sequential streams. Once the stream is generated then

we invoke filter and the forEach. Inside filter we specify a

lambda expression. Each element in the ArrayList is filtered

according to the lambda expression. In this case, the variable val is

an element in the ArrayList that is being processed and the function

says to filter only those elements whose value is greater than 50.

Next, the forEach iterates through the filtered elements and outputs

each one via println. In our example, this would output 56.3 and

81.1.

 We can simplify the code a little bit more by leaving out the

data type because Java is able to infer it from the context. The

resulting code becomes:

nums.stream()

 .filter(val -> val > 50)

 .forEach(val -> System.out.println(val));

The new format is quite different than the traditional method but the

style is more concise, can be more easily parallelized, and in general

will require less code than the old technique.

 Next, consider the concept of a map. A map takes elements in

the collection and transforms them in some way. First, consider a

simple mapping where we would like to add 100 to every element in

the ArrayList. We can do so as follows:

 nums.stream()

 .map(val -> (val + 100))

 .forEach(val -> System.out.println(val));

This will output 100 added to each value (i.e. 103.5, 156.3, 181.1,

104.8). Note that each function is invoked in sequence. If we add our

previous filter to the beginning then we would only get 156.3 and

181.1:

 nums.stream()

 .filter(val -> val > 50)

 .map(val -> (val + 100))

 .forEach(val -> System.out.println(val));

 Finally, consider the concept of collecting. Collecting means

that we process all of our elements in some way and collect the final

result. The result is often a single value. Examples include summing,

averaging, finding the minimum, or finding the maximum of a set of

data. The following code shows how we could compute the sum of

all elements in our ArrayList:

 double d = nums.stream()

 .mapToDouble(v -> v)

 .sum();

 System.out.println("The sum is " + d);

The mapToDouble function takes each element and maps it as a

double (a bit redundant here since we are starting with doubles) and

then accumulates them into a sum. As you might surmise, there are

also the methods mapToInt(), mapToLong(), etc. and methods to

compute min(), max(), average(), and other values.

More customization is possible using the reduce function. In

our case we’ll use the version that takes as input a seed value and a

binary function. Consider a collection with values v1, v2, and v3. If

we start with a seed value s, then reduce will first apply the binary

function to s and v1, producing r1. The binary function is then

applied with r1 and v2, producing r2. Then the binary function

applies r2 and v3, producing r3 which is returned as the final value.

The following code computes the sum of all values using reduce:

 d = nums.stream()

 .reduce(0.0, (v1, v2) -> v1 + v2);

 System.out.println("The sum is " + d);

 7

In this case, 0.0 is the seed value and the second parameter is the

function that specifies how to accumulate the sum of the value. For

the first step, v1 corresponds to 0.0 and v2 corresponds to 3.5. This

produces the intermediate sum of 3.5. In the second step, v1

corresponds to 3.5 and v2 corresponds to 56.3 to produce 59.8. In the

third step, v1 corresponds to 59.8 and v2 to 81.1, and so on until the

sum is produced.

For an additional example, consider the following list of

names:

ArrayList<String> names = new ArrayList<>();

names.add("Paco");

names.add("Enrique");

names.add("Bob");

If we want to compute the average length of all names then we could

map the length to an integer:

d = names.stream()

 .mapToInt(name -> name.length())

 .average()

 .getAsDouble();

System.out.println("The average is " + d)

In this case we map each name to an int using the length() method,

compute the average, and get the value as a double.

 For the final example, say that we want to get the largest

name. We can use the reduction technique:

String s = names.stream()

 .reduce("", (n1, n2) ->

 {

 if (n1.length() > n2.length())

 return n1;

 else

 return n2;

 }

);

System.out.println("longest Name: " + s);

We use a block in this case where the function compares the length of

the strings and returns the largest one. This is one case where we

would commonly use the ? operator to shorten the code:

String s = names.stream()

 .reduce("", (n1, n2) ->

 (n1.length() > n2.length()) ? n1 : n2);

System.out.println("longest Name: " + s);

These examples should give you an idea of what Java lambda

expressions look like and what they can do. While there is definitely

a learning curve, lambda expressions will allow you to write code

that is more concise while enabling parallel processing. Java 8’s new

syntax supports both functional programming and object-oriented

programming in a way that reaps the benefits of both styles.

