Introduction to UML

CSCE A222

What is UML?

 Unified Modeling Language
— OMG Standard, Object Management Group
— Based on work from Booch, Rumbaugh, Jacobson
« UML is a modeling language to express and
design documents, software
— Particularly useful for OO design

— Not a process, but some have been proposed using
UML

— Independent of implementation language

Why use UML

Open Standard, Graphical notation for

— Specifying, visualizing, constructing, and documenting software
systems

Language can be used from general initial design to very
specific detailed design across the entire software
development lifecycle

Increase understanding/communication of product to
customers and developers

Support for diverse application areas

Support for UML in many software packages today (e.g.
Visual Studio, plugins for popular IDE’s like NetBeans,
Eclipse)

Based upon experience and needs of the user community

Brief History

Inundated with methodologies in early 90°s
— Booch, Jacobson, Yourden, Rumbaugh

Booch, Jacobson merged methods 1994
Rumbaugh joined 1995

1997 UML 1.1 from OMG includes input from
others, e.g. Yourden

UML v2.5 current version

History of UML

+ industrialization

? revision wows
AU

OMG Acceptance, Nov 1997 —————— UML 1.1 ==
Final submission to OMG, Sep ‘97
First submission to OMG, Jan 97 standardization
UNL partners UML10 o]
4
Web - June '96 -~ UML 0.9
OOPSLA 95— — |nified Method 0.8

Other methods Booch OOAD OMT O0SE

Contributions to UML

Harel
Meyer Gamma, et al

Statecharts

Before and after
conditions

Frameworks and patterns,

HP Fusion
Booch
Operation descriptions and

00A&D \ / message numbering
UNIFIED o

Embley
-<
Rumbaugh - IS)
OMT LANGUAGE Singleton classes and

~ \ high-level view
Jacobson \ Wirfs-Brock
OOSE Responsibilities

Shlaer - Mellor Odell

Object lifecycles Classification

UML Models, Views, Diagrams

« UML is a multi-diagrammatic language
— Each diagram is a view into a model
 Diagram presented from the aspect of a particular stakeholder

 Provides a partial representation of the system
« Is semantically consistent with other views

— Example views

Logical View

End-user

Functionality Use Case

View

Process View
System integrators

Software management

Implementation View

Programmers

Deployment View
System engineering

Performance System fopology
Scalability Delivery, installation
Throughput Communication

Models, Views, Diagrams

Collaboration
Diagrams

Models

Static views
Class]
Diagrams
Use Case
i Object
?g‘l“m L) L| | Diagrams

Component
Diagrams

Statechart
Diagrams Activity
Diagrams

Dynamic views

UML.: First Pass

 You can model 80% of most problems by
using about 20 % UML

« We only cover the 20% here

UML Baseline

» Use Case Diagrams
+ Class Diagrams
 Package Diagrams

* Interaction Diagrams
— Sequence
— Collaboration

« Activity Diagrams
« State Transition Diagrams
» Deployment Diagrams

Passenger

Use Case Diagrams

+ Used during requirements
elicitation to represent external
behavior

+ Actors represent roles, that is, a
type of user of the system

\ « Use cases represent a sequence of
interaction for a type of

functionality; summary of
scenarios

PurchaseTicket The use case mc_>de| is the set of
all use cases. It is a complete

description of the functionality of
the system and its environment

Actors

» An actor models an external entity
which communicates with the system:
— User
— External system

Passenger — Physical environment

 An actor has a unique name and an
optional description.

» Examples:

— Passenger: A person in the train

— GPS satellite: Provides the system with
GPS coordinates

Use Case

A use case represents a class of
functionality provided by the
system as an event flow.

PurchaseTicket A USe case consists of:
« Unique name
« Participating actors
 Entry conditions
» Flow of events
« Exit conditions
« Special requirements

Use Case Diagram: Example

Name: Purchase ticket Event flow:

1. Passenger selects the number of
Participating actor: Passenger zones to be traveled.

2. Distributor displays the amount

Entry condition: due.)
. Passenger standing in frontof E;assehnger msecrjts money, of at
ticket distributor. east the amount due.

. Passenger has sufficient 4. Distributor returns change.

money to purchase ticket. 5. Distributor issues ticket.
Anything missing?
Exit condition: y g g

s Passenger has ticket. EXCeptional cases!

The <<extends>> Relationship

+ <<extends>> relationships represent
exceptional or seldom invoked cases.

» The exceptional event flows are

Passenger factored out of the main event flow for
| clarity.
+ Use cases representing exceptional
O flows can extend more than one use
PurchaseTicket case.

The direction of a <<extends>>
relationship is to the extended use case

<<extends>
<:::::::> <<extends>> <:::::::>

<<extends>>

OutOfOrder <<extends>> TimeOut
Cancel NoChange

The <<includes>>
Relationship

ncludes>> relationship
represents behavior that is
\ factored out of the use case.
Passenger o
| © + <<includes>> behavior is
factored out for reuse, not because
<::::::> PurchaseMultiCard it is an exception
PurchaseSingleTicket * The direction of a <<includes>>

relationships).

<<includes>> relationship is to the using use
<<includes>d case (unlike <<extends>>

CollectMoney

<<extend§z;/7 “\\f<extends>>

C > >

NoChange Cancel

Use Cases are useful for...

Determining requirements

— New use cases often generate new requirements as the
system is analyzed and the design takes shape.

« Communicating with clients

— Their notational simplicity makes use case diagrams a good
way for developers to communicate with clients.

— May require some explanation.

« Generating test cases

— The collection of scenarios for a use case may suggest a
suite of test cases for those scenarios.

Use Case Diagrams: Summary

Use case diagrams represent external behavior

Use case diagrams are useful as an index into
the use cases

Use case descriptions provide meat of model,
not the use case diagrams.

All use cases need to be described for the
model to be useful.

Use Case Exercise

« Create use cases for buying a beverage from
the eXpress coffee shop in EIB.

Class Diagrams

 Gives an overview of a system by showing its
classes and the relationships among them.

— Class diagrams are static

— they display what interacts but not what happens
when they do interact

« Also shows attributes and operations of each
class

» Good way to describe the overall architecture
of system components

10

Class Diagram Perspectives

« We draw Class Diagrams under three
perspectives
— Conceptual

« Software independent
« Language independent

— Specification
» Focus on the interfaces of the software
— Implementation
« Focus on the implementation of the software

Classes — Not Just for Code

TariffSchedule

Table zone2price

Enumeration getZones ()
Price getPrice (Zone)

TariffSchedule
zone2price
getZones ()

Signature

getPrice()

Operations TariffSchedule

flil

« A class represent a concept

+ A class encapsulates state (attributes) and behavior
(operations).

+ Each attribute has a type.

 Each operation has a signature.

 The class name is the only mandatory information.

11

Instances

tarif 1974:TariffSchedule
zone2price = {
{1, .20},
{27, .40},
{37, .60}}

 An instance represents a phenomenon.

« The name of an instance is underlined and can
contain the class of the instance.

 The attributes are represented with their values.

UML Class Notation

« Aclass is a rectangle divided into three parts

— Class name

— Class attributes (i.e. data members, variables)

— Class operations (i.e. methods)
* Modifiers

— Private: -

— Public: +

— Protected: #

— Static: Underlined (i.e. shared among all members of the class)
» Abstract class: Name in italics

Employee

-Name : string

+ID : long

#Salary : double

+getName() : string

+setName()

-calcinternalStuff(in x : byte, in'y : decimal)

UMVL Class Notation

Lines or arrows between classes indicate relationships

Association

+ A relationship between instances of two classes, where one class must know
about the other to do its work, e.g. client communicates to server

« indicated by a straight line or arrow

Aggregation

 An association where one class belongs to a collection, e.g. instructor part of

Faculty

« Indicated by an empty diamond on the side of the collection

Composition

« Strong form of Aggregation

« Lifetime control; components cannot exist without the aggregate
« Indicated by a solid diamond on the side of the collection

Inheritance

« An inheritance link indicating one class a superclass relationship, e.g. bird is

part of mammal

« Indicated by triangle pointing to superclass

Binary Association

Binary Association: Both entities “Know About” each other

A

myB: B

+tdoSomething ()

myB.service();

myA.doSomething();

13

Unary Association

A knows about B, but B knows nothing about A

A - B
myB: B* tservice ()
+do3omething ()

myB.service(); Arrow points in direction

of the dependency

Aggregation

Aggregation is an association with a “collection-member” relationship

Crate K>——>1 Module

-aModule: Mcdule* *‘ +service ()
+doSomething ()

void doSomething() Hollow diamond on
aModule.service(); the Collection side

No sole ownership implied

14

Composition

Composition is Aggregation with:
Lifetime Control (owner controls construction, destruction)

Part object may belong to only one whole object

Team

-members : Employee

members[0] =
new Employee();

delete members[0];

Employee

-Name : string
+ID : long
#Salary : double
-adfaf : bool

+getName() : string

+setName()

-calcinternalStuff(in x : byte, in'y : decimal)

Filled diamond on
side of the Collection

Inheritance

Standard concept of inheritance

A

-myX: double -

+getX () :

+setX (:double)
double

|

o

+operation ()

class B() extends A J

"~ Base Class

" Derived Class

15

UML Multiplicities

Links on associations to specify more details about the relationship

Multiplicities

Meaning

0.1

Zero or one instance. The notationn .. m
indicates n to m instances.

0.* or *

no limit on the number of instances
(including none).

exactly one instance

at least one instance

UML Class Example

Customer Order
name 1 0.7 | date
address K status
association ~ caleTax
) calcTotal
—» Payment -
abstract class ¥ 1 J 1 calcTataheight
amaunt 1
role name —
generalization __)
lingitem [1.7 €——
[| | OrderDetail
Credit Cash Check]
quantity
number cashTendered name taxstatus
type hankiD
expDate calcSubTotal
authorized calceight
authorized

_multipticity
i

i
/

v \
0.* 1

tem <«

shippinoveight

|
\

description
getPriceF orGuantity
getieight <

navigability

class name

attributes

operations

16

Association Details

« Can assign names to the ends of the
association to give further information

Employee
Team -group -
-Name : string
-members: Employee WHD : long
1 #Salary: double
. -adfaf: bool

+getName) : string
+setName()
-calcinternalStuffin x : byte, in y : decima)

Class Exercise

« Create class diagrams for eXpress scenario.

Class Exercise

« Create class diagrams for the Alien exercise.

Static vs. Dynamic Design

« Static design describes code structure and object
relations

— Class relations
— Obijects at design time
— Doesn’t change
« Dynamic design shows communication between
objects
— Similarity to class relations
— Can follow sequences of events
— May change depending upon execution scenario
— Called Object Diagrams

18

Object Diagrams

« Shows instances of Class Diagrams and links
among them

— An object diagram is a snapshot of the objects ina
system
 Ata pointin time
 With a selected focus
— Interactions — Sequence diagram

— Message passing — Collaboration diagram
— Operation — Deployment diagram

Object Diagrams

 Format is

— Instance name : Class name
— Attributes and Values

— Example:

i RO NS AT
M1: Menu window [

1
visible=true .- Attribute values |

position=(10.23) |«
size=160

Objects and Links

c: Company

d1 : Department d2 : Department

name = “Sales” \ wname = “R&D"
link
- __,m| \
/
objéct 43 : Department attribute value
{ name = “US Sales”

A

anonymous object
manager
p:Person (
* _: Contactinformation

name = “Erin” Py
employeelD = 4362 address = “1472 Miller St.”
title = “VP of Sales”

Can add association type and also message type

Package Diagrams

» To organize complex class diagrams, you can group
classes into packages. A package is a collection of
logically related UML elements

* Notation
— Packages appear as rectangles with small tabs at the top.
— The package name is on the tab or inside the rectangle.

— The dotted arrows are dependencies. One package depends
on another if changes in the other could possibly force
changes in the first.

— Packages are the basic grouping construct with which you
may organize UML models to increase their readability

20

Package Example

DispatcherInterface

>

Notification

~
~

N

IncidentManagement

More Package Examples

Students Academic
Employees

+— Example #1

Mailing List
Manager

Domain

Orders Customers

Example #2 ——»

Mailing List
Manager

Mailing List Ul

21

Interaction Diagrams

« Interaction diagrams are dynamic -- they
describe how objects collaborate.

« A Sequence Diagram:
— Indicates what messages are sent and when
— Time progresses from top to bottom
— Objects involved are listed left to right

— Messages are sent left to right between objects in
sequence

Sequence Diagram Format

Actor from
Use Case % Objects
vl : Process |TIEIH4___‘ Stock Item
2ales Order Screer
| [irw}r;'rl‘ ’Ii ; !“1 | |
> : :
I |
Find 1 1
' = Gel quantity 1
.. i 2 —
Activation < i s 0
| isplay
4 I |
1 1
U 1 1 1
/‘ - -
Lifeline -~ Calls = Solid Lines

Returns = Dashed Lines

22

Sequence Diagram : Destruction

aA
T
] «greates o bB
|
aperation o,
e - eSUll _ _ |
I

;/4_‘___ Shows Destruction of b
(and Construction)

Sequence Diagram : Timing

Slanted Lines show propagation delay of messages
Good for modeling real-time systems

|CaHer'User| | Phone:Tele | | Uncle:User |

r e NQo !

T
|
|
|
I
I
I
I

If messages cross this is usually problematic — race conditions

23

Sequence Example: Alarm System

message on the display, notifies the monitoring

service

Sequence Diagram Example

Hotel Reservation

object >

wihdow
Userlnterface

aChain

HotelChain

aHotel
Hotel

makeReserationdyvoid |
|

=

A
- message

N deletion

figm=

makeReservationdvoid |

TR

iteratiol

n

When the alarm goes off, it rings the alarm, puts a

for each day] isRoom=availabledhoolean

¥ condition

[i=Room]

figm=

aReservation
Reservation

creation Z — 1

note x\

T

areservation
confirmation.

If a room is available for
each day of the stay, make

and send a

v ¥

aNotice
Caonfirmation

]

24

Sequence Exercise

 Create a sequence diagrams for the eXpress
example.

Collaboration Diagram

« Collaboration Diagrams show similar information to
sequence diagrams, except that the vertical sequence
Is missing. In its place are:
— Object Links - solid lines between the objects that interact
— On the links are Messages - arrows with one or more
message name that show the direction and names of the
messages sent between objects
« Emphasis on static links as opposed to sequence in
the sequence diagram

25

\: off hook
\.1 : dial tone
\2: dial

Collaboration Diagram

4: Hello?
-—

Elevator

1: Go up
At ring 3: Close
—_—

/2‘1.1: off hook Cabin

3: connect

‘\3: connect

2: Turn on

Light

Phone:TS

Activity Diagrams

Fancy flowchart

Displays the flow of activities involved in a single process
States

 Describe what is being processed

« Indicated by boxes with rounded corners
Swim lanes

« Indicates which object is responsible for what activity
Branch

« Transition that branch

« Indicated by a diamond
Fork

« Transition forking into parallel activities

« Indicated by solid bars
Start and End

o ®

: Door

26

Sample Activity Diagram

 Ordering System

« May need multiple
diagrams from other
points of view

[Wore ltzms]

Begin Order

Add ltem

Calculate Total

Confirm Order

lizaueg]

Flace Order

Activity Diagram Example

swim

{_Enteramount

—
— ¥ ™y
Customer AT Maching “Bank
+— start
activit
e ¥
(Enter pin { Authorize guard expression

branch ¥
petigpiy XYY lmalidping

{ Check account balance

[balal

o fork

ce == amount] % [balance = amouni]

)«

Take money from slot —

end

{ Dehit account

Join

Lt

Show balance

Erge —y

Eject card

27

Activity Exercise

« Create activity diagrams for the eXpress
example.

State Transition Diagrams

 Fancy version of a DFA
+ Shows the possible states of the object and the
transitions that cause a change in state
— i.e. how incoming calls change the state

 Notation

— States are rounded rectangles

— Transitions are arrows from one state to another. Events or
conditions that trigger transitions are written beside the
arrows.

— Initial and Final States indicated by circles as in the
Activity Diagram

« Final state terminates the action; may have multiple final states

28

State Representation

» The set of properties and values describing the object
in a well defined instant are characterized by
— Name

— Activities (executed inside the state)
Do/ activity

— Actions (executed at state entry or exit)
* Entry/ action
« Exit/ action

— Actions executed due to an event
» Event [Condition] / Action ~Send Event

Notation for States

) A Working |
e o P

name do/ build piece

/

i

On event/ ‘ |
\‘\ (Typing Password \ activities

%] entry/ set echo off ’,.-”/
a exit/ set echo on a
get(char)/ store char

29

Simple Transition Example

(Typing Password

event

\

et (char)/ store char display “enter password”

entry/ set echo off ¥ “
exit/ set echo on Request/
g

L4
kY

)
action

More Simple State Examples

\ideo Recorder

.\

TogglePower

or (o]
) TogglePower
Remote Control
“VCR"
VR Control
- v -
“OnOff"/*TV.TogglePower “OnOff"/*Video Recorder.TogglePowe!

TV

)

Off

TogglePower

TogglePower

30

State Transition Example

Validating PIN/SSN

®

initial state

fCursorto S5

Getting 55N

CancelQuit - Retry/Clear S5, PIN entries

[not validfDisplay error message submit

field/Cursorto PIN

/ final state
/!

5' Validating

. -
- transition —

Press tah OR move cursorta PIM

event guard uc}fviry
\

X
Press key[keyt ta b]IDispr;y key

Press shif-tab OR move cursor to
SSN field/Cursorto S5M

fualicStart transaction | 20VAN0AtE SEM and PIN submit
—7~ action

Gefting PIN [-’ state

Press keylkey = shift-tabl\Displaydot

State Charts — Local Variables

« State Diagrams can also store their own local
variables, do processing on them

« Library example counting books checked out

and returned

Borrow /
N =N+1

.7/%(Is-Member

Start / N=0 Stop / N=0

Return /
N=N-1

Clean-Up O

31

Component Diagrams

Shows various components in a system and their
dependencies, interfaces

Explains the structure of a system

Usually a physical collection of classes

— Similar to a Package Diagram in that both are used to group
elements into logical structures

— With Component Diagrams all of the model elements are
private with a public interface whereas Package diagrams
only display public items.

Component Diagram Notation

Components are shown as rectangles with two

tabs at the upper left g

Dashed arrows indicate dependencies

Circle and solid line indicates an interface to
the component E:

o

32

Component Example - Interfaces

» Restaurant
ordering
system

e Define
interfaces
first —
comes
from Class
Diagrams

O <<user interfaces>
Order ltem Form

+Begin Order()

+Add ltem()

+Select tem()

+Select Quantity()

+Check Stock()

+Enter Special Instructions()
+Calculate tem Tatal()

<<user interface>»
O QOrder Confirmation Form

+Calculate Tatal()
+Caonfirm Order()
+Calculate Tax()

+Calculate Restaurant Total()

+Calculate Delivery Charge()
+Calculate Grand Total()

() <<user interfaces>
Error Form

+Display Error Message()

O [OrderSystem
+Create Order()

O 10rder

+hdd ltem()
+Place Order()

o IRestaurantSystem.

+Place Order()
+Check Stocki)

0 [TanEngine

+Calculate)

Component Example - Components

 Graphical depiction of components

O <<user interface>>
Order Item Form

<<user interface>>

Order Confirmation Form <<user interfaces>
Error Form

L[]

Restaurant Senice Web

|OrderSystem 1Qrder

00—

Order System
1

A

]
: Tax Systern ——o [TaxEngine

T IRestaurantSystem

NA

1
jemaurant System

33

Component Example - Linking

« Linking components with dependencies

<<user interface>> seuser interface>>
O Order Confirmation Form O ceuser interface=>
Order ltem Farrm Errar Form

Restaurant Service Web

—
 —

il

10rderSystern 10rder

1
Order System franssmmemme————a-
1 T IRestaurantSystem

O0—o¢

T
:j!estauranl Systemn

) —10
Tax System [TanEngine
|

Deployment Diagrams

 Shows the physical architecture of the hardware and
software of the deployed system
» Nodes

— Typically contain components or packages

— Usually some kind of computational unit; e.g. machine or
device (physical or logical)

* Physical relationships among software and hardware
in a delivered systems

— Explains how a system interacts with the external
environment

34

Some Deployment Examples

Client APC

v | Comporatedd
iorvor Hokst
gmognen

Deployment Example

Moder .
connection
g
access
Disk
Bank Server
==Database=» Morgage Application
CustomerDB
3 |
——————— 4
interface m;agexmlication

Corporate
Database DB
[he:

Eeal Estate Server

Listing

— =

==Slorage==

MultipleListings

IListing
=

\ component

TCRIP

aPc -
_—

Buyetinterface

TCRIP

—

connection

Often the Component Diagram is combined with the Deployment

35

Summary and Tools

UML is a modeling language that can be used independent of
development

Adopted by OMG and notation of choice for visual modeling
— http://mwww.omg.org/uml/

Creating and modifying UML diagrams can be labor and time
intensive.

Lots of tools exist to help
— Tools help keep diagrams, code in sync
— Repository for a complete software development project
— Examples here created with TogetherSoft ControlCenter, Microsoft
Visio, Tablet UML
— Other tools:
» Rational, Cetus, Embarcadero
» Google it to find free / commercial tools

36

