
Chapter 10: Hashing

Introduction (continued)

• If the hash function h is able to transform different key values
into different hash values, it is called a perfect hash function

• For the hash function to be perfect, the table must have as
many positions as there are items to be hashed

• However, it is not always possible to know how many
elements will be hashed in advance, so some estimating is
needed

• Consider a symbol table for a compiler, to store all the
variable names

• Given the nature of the variable names typically used, a table
with 1000 positions may be more than adequate

• However, even if we wanted to handle all possible variable
names, we still need to design an appropriate h

2Data Structures and Algorithms in C++, Fourth Edition

Hash Functions

• The total possible number of hash functions for n items
assigned to m positions in a table (n < m) is mn

• The number of perfect hash functions is equal to the number
of different placements of these items, and is m!

m−n !

• With 50 elements and a 100-position array, we would have a
total of 10050 hash functions and about 1094 perfect hash
functions (about 1 in a million)

• Most of the perfect hashes are impractical and cannot be
expressed in a simple formula

Data Structures and Algorithms in C++, Fourth Edition 3

Hash Functions (continued)

• Division
– Hash functions must guarantee that the value they produce is a valid

index to the table

– A fairly easy way to ensure this is to use modular division, and divide
the keys by the size of the table, so h(K) = K mod TSize where TSize =
sizeof(table)

– This works best if the table size is a prime number, but if not, we can
use h(K) = (K mod p) mod TSize for a prime p > TSize

– However, nonprimes work well for the divisor provided they do not
have any prime factors less than 20

– The division method is frequently used when little is known about the
keys

Data Structures and Algorithms in C++, Fourth Edition 4

Hash Functions (continued)

• Folding
– In folding, the keys are divided into parts which are then combined (or

“folded”) together and often transformed into the address

– Two types of folding are used, shift folding and boundary folding
– In shift folding, the parts are placed underneath each other and then

processed (for example, by adding)
– Using a Social Security number, say 123-45-6789, we can divide it into

three parts - 123, 456, and 789 – and add them to get 1368
– This can then be divided modulo TSize to get the address
– With boundary folding, the key is visualized as being written on a piece

of paper and folded on the boundaries between the parts

Data Structures and Algorithms in C++, Fourth Edition 5

Hash Functions (continued)

• Folding (continued)
– The result is that alternating parts of the key are reversed, so the

Social Security number part would be 123, 654, 789, totaling 1566
– As can be seen, in both versions, the key is divided into even length

parts of some fixed size, plus any leftover digits
– Then these are added together and the result is divided modulo the

table size
– Consequently this is very fast and efficient, especially if bit strings are

used instead of numbers
– With character strings, one approach is to exclusively-or the individual

character together and use the result
– In this way, h(“abcd”) = “a” ⋁ “b” ⋁ “c” ⋁ “d”

Data Structures and Algorithms in C++, Fourth Edition 6

Hash Functions (continued)

• Folding (continued)
– However, this is limited, because it will only generate values between

0 and 127
– A better approach is to use chunks of characters, where each chunk

has as many characters as bytes in an integer
– On the IBM PC, integers are often 2 bytes long, so h(“abcd”) = “ab” ⋁

“cd”, which would then be divided modulo TSize

Data Structures and Algorithms in C++, Fourth Edition 7

Hash Functions (continued)

• Mid-Square Function
– In the mid-square approach, the numeric value of the key is squared

and the middle part is extracted to serve as the address
– If the key is non-numeric, some type of preprocessing needs to be

done to create a numeric value, such as folding
– Since the entire key participates in generating the address, there is a

better chance of generating different addresses for different keys
– So if the key is 3121, 31212 = 9,740,641, and if the table has 1000

locations, h(3121) = 406, which is the middle part of 31212

– In application, powers of two are more efficient for the table size and
the middle of the bit string of the square of the key is used

– Assuming a table size of 1024, 31212 is represented by the bit string
1001010 0101000010 1100001, and the key, 322, is in italics

Data Structures and Algorithms in C++, Fourth Edition 8

Hash Functions (continued)

• Extraction
– In the extraction approach, the address is derived by using a portion of

the key
– Using the SSN 123-45-6789, we could use the first four digits, 1234,

the last four 6789, or the first two combined with the last two 1289
– Other combinations are also possible, but each time only a portion of

the key is used
– With careful choice of digits, this may be sufficient for address

generation
– For example, some universities give international students ID numbers

beginning with 999; ISBNs start with digits representing the publisher
– So these could be excluded from the address generation if the nature

of the data is appropriately limited

Data Structures and Algorithms in C++, Fourth Edition 9

Hash Functions (continued)

• Radix Transformation
– With radix transformation, the key is transformed into a different base
– For instance, if K is 345 in decimal, its value in base 9 is 423
– This result is then divided modulo TSize, and the resulting value

becomes the address top which K is hashed
– The drawback to this approach is collisions cannot be avoided
– For example, if TSize is 100, then although 345 and 245 in decimal will

not collide, 345 and 264 will because 264 is 323 in base nine
– Since 345 is 423, these two values will collide when divided modulo

100

Data Structures and Algorithms in C++, Fourth Edition 10

Hash Functions (continued)

• Universal Hash Functions
– When little is known about the keys, a universal class of hash

functions can be used
– Functions are universal when a randomly chosen member of the class

will be expected to distribute a sample evenly, guaranteeing low
collisions

– This idea was first considered by Larry Carter and Mark Wegman in
1979

– Instead of using a defined hash function, for which a bad set of keys
may exist with many collisions, we select a hash function randomly
from a family of hash functions! This is a real-time decision

– H is called universal if no distinct pair of keys are mapped to the same
position in the table by a function chosen at random from h with a
probability of 1 / TSize

– This basically means there is one chance in TSize that two randomly
chosen keys collide when hashed with a randomly chosen function

Data Structures and Algorithms in C++, Fourth Edition 11

Hash Functions (continued)

• Universal Hash Functions (continued)
– One example of such a class of functions is defined for a prime

number p > |keys| and random numbers a and b

H = {ha,b(K): ha,b(K) = ((aK+b) mod p) mod TSize and 0 ≤ a, b < p}

– Another class of functions is for keys considered as sequences of
bytes, K = K0K1 … Kr-1

– For a prime p > 28 = 256 and a sequence a = a0 , a1 , …, ar-1 ,

Data Structures and Algorithms in C++, Fourth Edition 12

() () 
1

0 1 1

0

: mod mod and 0 , , ,
r

a a i i r

i

H h K h K a K p TSize a a a p
−

−

=

= =  
  
  
  


Collision Resolution

• Open Addressing
– The efficiency of different open addressing techniques depends on the

size of the table and number of elements in the table

– There are formulas, developed by Donald Knuth, that approximate the
number of times for successful and unsuccessful searches

– These are shown in Figure 10.3

Fig. 10.3 Formulas approximating, for different hashing methods, the average numbers of trials for successful and
unsuccessful searches (Knuth 1998)

Data Structures and Algorithms in C++, Fourth Edition 13

Collision Resolution (continued)

• Open Addressing (continued)
– Figure 10.4 shows the number of searches for different percentages of

occupied cells

Fig. 10.4 The average numbers of successful searches and unsuccessful searches for different collision resolution methods

Data Structures and Algorithms in C++, Fourth Edition 14

Collision Resolution (continued)

• Chaining
– In chaining, the keys are not stored in the table, but in the info

portion of a linked list of nodes associated with each table position

– This technique is called separate chaining, and the table is called a
scatter table

– This was the table never overflows, as the lists are extended when
new keys arrive, as can be seen in Figure 10.5

– This is very fast for short lists, but as they increase in size,
performance can degrade sharply

– Gains in performance can be made if the lists are ordered so
unsuccessful searches don’t traverse the entire list, or by using self-
organizing linked lists

– This approach requires additional space for the pointers, so if there
are a large number of keys involved, space requirements can be high

Data Structures and Algorithms in C++, Fourth Edition 15

Collision Resolution (continued)

• Bucket Addressing
– Yet another approach to collision handling is to store all the colliding

elements in the same position in the table

– This is done by allocating a block of space, called a bucket, with each
address

– Each bucket is capable of storing multiple items

– However, even with buckets, we cannot avoid collisions, because
buckets can fill up, requiring items to be stored elsewhere

– If open addressing is incorporated into the design, the item can be
stored in the next bucket if space is available, using linear probing

– This is shown in Figure 10.8

Data Structures and Algorithms in C++, Fourth Edition 16

Collision Resolution (continued)

• Bucket Addressing (continued)

Fig. 10.8 Collision resolution with buckets and linear probing method

– Collisions can be stored in an overflow area, in which case the bucket
includes a field to indicate if a search should consider that area or not

– If used with chaining, the field could indicate the beginning of the list
in the overflow area associated with the bucket shown in Figure 10.9

Data Structures and Algorithms in C++, Fourth Edition 17

Deletion

• How can data be removed from a hash table?

• If chaining is used, the deletion of an element entails deleting
the node from the linked list holding the element

• For the other techniques we’ve considered, deletion usually
involves more careful handling of collision issues, unless a
perfect hash function is used

• This is illustrated in Figure 10.10a, which stores keys using
linear probing

• In Figure 10.10b, when A4 is deleted, attempts to find B4 check
location 4, which is empty, indicating B4 is not in the table

• A similar situation occurs in Figure 10.10c, when A2 is deleted,
causing searches for B1 to stop at position 2

Data Structures and Algorithms in C++, Fourth Edition 18

Deletion (continued)

Fig. 10.10 Linear search in the situation where both insertion and deletion of keys are permitted

– A solution to this is to leave the deleted keys in the table with some
type of indicator that the keys are not valid

– This way, searches for elements won’t terminate prematurely

– When new keys are inserted, they can overwrite the marked keys

Data Structures and Algorithms in C++, Fourth Edition 19

Deletion (continued)

• A drawback is if the table becomes overloaded with deleted
records, slowing down search times, because open addressing
requires testing each element

• So the table needs to be purged periodically by moving
undeleted elements to cells occupied by deleted elements

• Those cells containing deleted elements not overwritten can
then be marked as available

Data Structures and Algorithms in C++, Fourth Edition 20

Perfect Hash Functions

• All the examples we’ve considered to this point have assumed
the data being hashed is not completely known

• Consequently, the hashing that took place only coincidentally
turned out to be ideal in that collisions were avoided

• The majority of the time collisions had to be resolved because
of conflicting keys

• In addition, the number of keys is usually not known in
advance, so the table size had to be large enough

• Table size also played a role in the number of collisions; larger
tables had fewer collisions if the hash took this into account

• All these factors were the result of not knowing ahead of time
about the body of data to be hashed

Data Structures and Algorithms in C++, Fourth Edition 21

Perfect Hash Functions (continued)

• Therefore the hash function was developed first and then the
data was processed into the table

• In a number of cases, though, the data is known in advance,
and the hash function can be derived after the fact

• This function may turn out to be a perfect hash if items hash
on the first try

• Additionally, if the function uses only as many cells as are
available in the table with no empty cells left after the hash, it
is called a minimal perfect hash function

• Minimal perfect hash functions avoid the need for collision
resolution and also avoid wasting table space

Data Structures and Algorithms in C++, Fourth Edition 22

Perfect Hash Functions (continued)

• Processing fixed bodies of data occurs frequently in a variety
of applications

• Dictionaries and tables of reserved words in compilers are
among several examples

• Creating perfect hash functions requires a great deal of work

• Such functions are rare; as we saw earlier, for 50 elements in a
100-position array, only 1 function in a million is perfect

• All the other functions will lead to collisions

• Book has examples on Cichelli’s Method and FHCD for
minimal perfect hash functions for small number of strings

Data Structures and Algorithms in C++, Fourth Edition 23

Rehashing

• When hash tables become full, no more items can be added

• As they fill up and reach certain levels of occupancy
(saturation), their efficiency falls due to increased searching
needed to place items

• A solution to these problems is rehashing, allocating a new,
larger table, possibly modifying the hash function (and at least
TSize), and hashing all the items from the old table to the new

• The old table is then discarded and all further hashes are
done to the new table with the new function

• The size of the new table can be determined in a number of
ways: doubled, a prime closest to doubled, etc.

Data Structures and Algorithms in C++, Fourth Edition 24

Rehashing (continued)

• All the methods we’ve looked at can use rehashing, as they
then continue using the processes of hashing and collision
resolution that were in place before rehashing

• One method in particular for which rehashing is important is
cuckoo hashing, first described by Rasmus Pagh and
Flemming Rodler in 2001

Data Structures and Algorithms in C++, Fourth Edition 25

Rehashing (continued)

• The cuckoo hashing
– Two tables, T1 and T2, and two hash tables, h1 and h2, are used in the

cuckoo hash

– Inserting a key K1 into table T1 uses hash function h1, and if T1[h1(K1)] is
open, the key is inserted there

– If the location is occupied by a key, say K2, this key is removed to allow
K1 to be placed, and K2 is placed in the second table at T2[h2(K2)]

– If this location is occupied by key K3, it is moved to make room for K2,
and an attempt is made to place K3 at T1[h1(K3)]

– So the key that is being placed in or moved to the table has priority
over a key that is already there

– There is a possibility that a sequence like this could lead to an infinite
loop if it ends up back at the first position that was tried

Data Structures and Algorithms in C++, Fourth Edition 26

Rehashing (continued)

• The cuckoo hashing (continued)
– It is also possible the search will fail because both tables are full

– To circumvent this, a limit is set on tries which if exceeded causes
rehashing to take place with two new, larger tables and new hash
functions

– Then the keys from the old tables are rehashed to the new ones

– If during this the limit on number of tries is exceeded, rehashing is
performed again with yet larger tables and new hash functions

Data Structures and Algorithms in C++, Fourth Edition 27

Rehashing (continued)

Data Structures and Algorithms in C++, Fourth Edition 28

Rehashing (continued)

Data Structures and Algorithms in C++, Fourth Edition 29

Rehashing (continued)

• The cuckoo hashing (continued)
– One point to note is that rehashing may be limited, so that instead of

creating tables, only new hash functions are created and keys
reprocessed

– However, this would be a global operation requiring both tables be
completely processed

Data Structures and Algorithms in C++, Fourth Edition 30

Hash Functions for Extendible Files

• While rehashing adds flexibility to hashing by allowing for
dynamic expansion of the has table, it has drawbacks

• In particular, the entire process comes to a halt while the new
table(s) are created and the values rehashed to the new table

• The time required for this may be unacceptable in many cases

• An alternative approach is to expand the table rather than
replace it, and only allow for local rehashing and local changes

• This approach won’t work with arrays, because expanding an
array can’t be done by simply adding locations to the end

• However, it can be managed if the data is kept in a file

Data Structures and Algorithms in C++, Fourth Edition 31

Hash Functions for Extendible Files
(continued)

• There are some hashing techniques that take into account
variable sizes of tables or files

• These fall into two groups: directory and directoryless

• In directory schemes, a directory or index of keys controls
access to the keys themselves

• There are a number of techniques that fall into this category
– Expandable hashing, developed by Gary D. Knott in 1971

– Dynamic hashing, developed by Per-Âke Larson in 1978

– Extendible hashing, developed by Ronald Fagin and others in 1979

• All of these distribute keys among buckets in similar ways

• The structure of the directory or index is the main difference

• Skipping details, see book for more

Data Structures and Algorithms in C++, Fourth Edition 32

