
Chapter 10: Hashing



Introduction (continued)

• If the hash function h is able to transform different key values 
into different hash values, it is called a perfect hash function

• For the hash function to be perfect, the table must have as 
many positions as there are items to be hashed

• However, it is not always possible to know how many 
elements will be hashed in advance, so some estimating is 
needed

• Consider a symbol table for a compiler, to store all the 
variable names

• Given the nature of the variable names typically used, a table 
with 1000 positions may be more than adequate

• However, even if we wanted to handle all possible variable 
names, we still need to design an appropriate h
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Hash Functions

• The total possible number of hash functions for n items 
assigned to m positions in a table (n < m) is mn

• The number of perfect hash functions is equal to the number 
of different placements of these items, and is m!

m−n !

• With 50 elements and a 100-position array, we would have a 
total of 10050 hash functions and about 1094 perfect hash 
functions (about 1 in a million)

• Most of the perfect hashes are impractical and cannot be 
expressed in a simple formula

Data Structures and Algorithms in C++, Fourth Edition 3



Hash Functions (continued)

• Division
– Hash functions must guarantee that the value they produce is a valid 

index to the table

– A fairly easy way to ensure this is to use modular division, and divide 
the keys by the size of the table, so h(K) = K mod TSize where TSize = 
sizeof(table)

– This works best if the table size is a prime number, but if not, we can 
use h(K) = (K mod p) mod TSize for a prime p > TSize

– However, nonprimes work well for the divisor provided they do not 
have any prime factors less than 20

– The division method is frequently used when little is known about the 
keys
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Hash Functions (continued)

• Folding
– In folding, the keys are divided into parts which are then combined (or 

“folded”) together and often transformed into the address

– Two types of folding are used, shift folding and boundary folding
– In shift folding, the parts are placed underneath each other and then 

processed (for example, by adding)
– Using a Social Security number, say 123-45-6789, we can divide it into 

three parts - 123, 456, and 789 – and add them to get 1368
– This can then be divided modulo TSize to get the address
– With boundary folding, the key is visualized as being written on a piece 

of paper and folded on the boundaries between the parts
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Hash Functions (continued)

• Folding (continued)
– The result is that alternating parts of the key are reversed, so the 

Social Security number part would be 123, 654, 789, totaling 1566
– As can be seen, in both versions, the key is divided into even length 

parts of some fixed size, plus any leftover digits
– Then these are added together and the result is divided modulo the 

table size
– Consequently this is very fast and efficient, especially if bit strings are 

used instead of numbers
– With character strings, one approach is to exclusively-or the individual 

character together and use the result
– In this way, h(“abcd”) = “a” ⋁ “b” ⋁ “c” ⋁ “d”
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Hash Functions (continued)

• Folding (continued)
– However, this is limited, because it will only generate values between 

0 and 127
– A better approach is to use chunks of characters, where each chunk 

has as many characters as bytes in an integer
– On the IBM PC, integers are often 2 bytes long, so h(“abcd”) = “ab” ⋁ 

“cd”, which would then be divided modulo TSize
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Hash Functions (continued)

• Mid-Square Function
– In the mid-square approach, the numeric value of the key is squared 

and the middle part is extracted to serve as the address
– If the key is non-numeric, some type of preprocessing needs to be 

done to create a numeric value, such as folding
– Since the entire key participates in generating the address, there is a 

better chance of generating different addresses for different keys
– So if the key is 3121, 31212 = 9,740,641, and if the table has 1000 

locations, h(3121) = 406, which is the middle part of 31212

– In application, powers of two are more efficient for the table size and 
the middle of the bit string of the square of the key is used

– Assuming a table size of 1024, 31212 is represented by the bit string 
1001010 0101000010 1100001, and the key, 322, is in italics
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Hash Functions (continued)

• Extraction
– In the extraction approach, the address is derived by using a portion of 

the key
– Using the SSN 123-45-6789, we could use the first four digits, 1234, 

the last four 6789, or the first two combined with the last two 1289
– Other combinations are also possible, but each time only a portion of 

the key is used
– With careful choice of digits, this may be sufficient for address 

generation
– For example, some universities give international students ID numbers 

beginning with 999; ISBNs start with digits representing the publisher
– So these could be excluded from the address generation if the nature 

of the data is appropriately limited
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Hash Functions (continued)

• Radix Transformation
– With radix transformation, the key is transformed into a different base
– For instance, if K is 345 in decimal, its value in base 9 is 423
– This result is then divided modulo TSize, and the resulting value 

becomes the address top which K is hashed
– The drawback to this approach is collisions cannot be avoided
– For example, if TSize is 100, then although 345 and 245 in decimal will 

not collide, 345 and 264 will because 264 is 323 in base nine
– Since 345 is 423, these two values will collide when divided modulo 

100
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Hash Functions (continued)

• Universal Hash Functions
– When little is known about the keys, a universal class of hash 

functions can be used
– Functions are universal when a randomly chosen member of the class 

will be expected to distribute a sample evenly, guaranteeing low 
collisions

– This idea was first considered by Larry Carter and Mark Wegman in 
1979

– Instead of using a defined hash function, for which a bad set of keys 
may exist with many collisions, we select a hash function randomly 
from a family of hash functions!  This is a real-time decision

– H is called universal if no distinct pair of keys are mapped to the same 
position in the table by a function chosen at random from h with a 
probability of 1 / TSize

– This basically means there is one chance in TSize that two randomly 
chosen keys collide when hashed with a randomly chosen function
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Hash Functions (continued)

• Universal Hash Functions (continued)
– One example of such a class of functions is defined for a prime 

number p > |keys| and random numbers a and b

H = {ha,b(K): ha,b(K) = ((aK+b) mod p) mod TSize and 0 ≤ a, b < p}

– Another class of functions is for keys considered as sequences of 
bytes, K = K0K1 … Kr-1

– For a prime p > 28 = 256 and a sequence a = a0 , a1 , …, ar-1 ,
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Collision Resolution

• Open Addressing 
– The efficiency of different open addressing techniques depends on the 

size of the table and number of elements in the table

– There are formulas, developed by Donald Knuth, that approximate the 
number of times for successful and unsuccessful searches

– These are shown in Figure 10.3

Fig. 10.3 Formulas approximating, for different hashing methods, the average numbers of trials for successful and 
unsuccessful searches (Knuth 1998)
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Collision Resolution (continued)

• Open Addressing (continued)
– Figure 10.4 shows the number of searches for different percentages of 

occupied cells

Fig. 10.4 The average numbers of successful searches and unsuccessful searches for different collision resolution methods
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Collision Resolution (continued)

• Chaining
– In chaining, the keys are not stored in the table, but in the info

portion of a linked list of nodes associated with each table position

– This technique is called separate chaining, and the table is called a 
scatter table

– This was the table never overflows, as the lists are extended when 
new keys arrive, as can be seen in Figure 10.5

– This is very fast for short lists, but as they increase in size, 
performance can degrade sharply

– Gains in performance can be made if the lists are ordered so 
unsuccessful searches don’t traverse the entire list, or by using self-
organizing linked lists

– This approach requires additional space for the pointers, so if there 
are a large number of keys involved, space requirements can be high
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Collision Resolution (continued)

• Bucket Addressing
– Yet another approach to collision handling is to store all the colliding 

elements in the same position in the table

– This is done by allocating a block of space, called a bucket, with each 
address

– Each bucket is capable of storing multiple items

– However, even with buckets, we cannot avoid collisions, because 
buckets can fill up, requiring items to be stored elsewhere

– If open addressing is incorporated into the design, the item can be 
stored in the next bucket if space is available, using linear probing

– This is shown in Figure 10.8
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Collision Resolution (continued)

• Bucket Addressing (continued)

Fig. 10.8 Collision resolution with buckets and linear probing method

– Collisions can be stored in an overflow area, in which case the bucket 
includes a field to indicate if a search should consider that area or not

– If used with chaining, the field could indicate the beginning of the list 
in the overflow area associated with the bucket shown in Figure 10.9
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Deletion

• How can data be removed from a hash table?

• If chaining is used, the deletion of an element entails deleting 
the node from the linked list holding the element

• For the other techniques we’ve considered, deletion usually 
involves more careful handling of collision issues, unless a 
perfect hash function is used

• This is illustrated in Figure 10.10a, which stores keys using 
linear probing

• In Figure 10.10b, when A4 is deleted, attempts to find B4 check 
location 4, which is empty, indicating B4 is not in the table

• A similar situation occurs in Figure 10.10c, when A2 is deleted, 
causing searches for B1 to stop at position 2

Data Structures and Algorithms in C++, Fourth Edition 18



Deletion (continued)

Fig. 10.10 Linear search in the situation where both insertion and deletion of keys are permitted

– A solution to this is to leave the deleted keys in the table with some 
type of indicator that the keys are not valid

– This way, searches for elements won’t terminate prematurely

– When new keys are inserted, they can overwrite the marked keys

Data Structures and Algorithms in C++, Fourth Edition 19



Deletion (continued)

• A drawback is if the table becomes overloaded with deleted 
records, slowing down search times, because open addressing 
requires testing each element

• So the table needs to be purged periodically by moving 
undeleted elements to cells occupied by deleted elements

• Those cells containing deleted elements not overwritten can 
then be marked as available
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Perfect Hash Functions

• All the examples we’ve considered to this point have assumed 
the data being hashed is not completely known

• Consequently, the hashing that took place only coincidentally 
turned out to be ideal in that collisions were avoided

• The majority of the time collisions had to be resolved because 
of conflicting keys

• In addition, the number of keys is usually not known in 
advance, so the table size had to be large enough

• Table size also played a role in the number of collisions; larger 
tables had fewer collisions if the hash took this into account

• All these factors were the result of not knowing ahead of time 
about the body of data to be hashed
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Perfect Hash Functions (continued)

• Therefore the hash function was developed first and then the 
data was processed into the table

• In a number of cases, though, the data is known in advance, 
and the hash function can be derived after the fact

• This function may turn out to be a perfect hash if items hash 
on the first try

• Additionally, if the function uses only as many cells as are 
available in the table with no empty cells left after the hash, it 
is called a minimal perfect hash function

• Minimal perfect hash functions avoid the need for collision 
resolution and also avoid wasting table space
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Perfect Hash Functions (continued)

• Processing fixed bodies of data occurs frequently in a variety 
of applications

• Dictionaries and tables of reserved words in compilers are 
among several examples

• Creating perfect hash functions requires a great deal of work

• Such functions are rare; as we saw earlier, for 50 elements in a 
100-position array, only 1 function in a million is perfect

• All the other functions will lead to collisions

• Book has examples on Cichelli’s Method and FHCD for 
minimal perfect hash functions for small number of strings
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Rehashing

• When hash tables become full, no more items can be added

• As they fill up and reach certain levels of occupancy 
(saturation), their efficiency falls due to increased  searching 
needed to place items

• A solution to these problems is rehashing, allocating a new, 
larger table, possibly modifying the hash function (and at least 
TSize), and hashing all the items from the old table to the new

• The old table is then discarded and all further hashes are 
done to the new table with the new function

• The size of the new table can be determined in a number of 
ways: doubled, a prime closest to doubled, etc.
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Rehashing (continued)

• All the methods we’ve looked at can use rehashing, as they 
then continue using the processes of hashing and collision 
resolution that were in place before rehashing

• One method in particular for which rehashing is important is 
cuckoo hashing, first described by Rasmus Pagh and 
Flemming Rodler in 2001
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Rehashing (continued)

• The cuckoo hashing
– Two tables, T1 and T2, and two hash tables, h1 and h2, are used in the 

cuckoo hash

– Inserting a key K1 into table T1 uses hash function h1, and if T1[h1(K1)] is 
open, the key is inserted there

– If the location is occupied by a key, say K2, this key is removed to allow 
K1 to be placed, and K2 is placed in the second table at T2[h2(K2)]

– If this location is occupied by key K3, it is moved to make room for K2, 
and an attempt is made to place K3 at T1[h1(K3)]

– So the key that is being placed in or moved to the table has priority 
over a key that is already there

– There is a possibility that a sequence like this could lead to an infinite 
loop if it ends up back at the first position that was tried
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Rehashing (continued)

• The cuckoo hashing (continued)
– It is also possible the search will fail because both tables are full

– To circumvent this, a limit is set on tries which if exceeded causes 
rehashing to take place with two new, larger tables and new hash 
functions

– Then the keys from the old tables are rehashed to the new ones

– If during this the limit on number of tries is exceeded, rehashing is 
performed again with yet larger tables and new hash functions
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Rehashing (continued)
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Rehashing (continued)

Data Structures and Algorithms in C++, Fourth Edition 29



Rehashing (continued)

• The cuckoo hashing (continued)
– One point to note is that rehashing may be limited, so that instead of 

creating tables, only new hash functions are created and keys 
reprocessed

– However, this would be a global operation requiring both tables be 
completely processed
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Hash Functions for Extendible Files

• While rehashing adds flexibility to hashing by allowing for 
dynamic expansion of the has table, it has drawbacks

• In particular, the entire process comes to a halt while the new 
table(s) are created and the values rehashed to the new table

• The time required for this may be unacceptable in many cases

• An alternative approach is to expand the table rather than 
replace it, and only allow for local rehashing and local changes

• This approach won’t work with arrays, because expanding an 
array can’t be done by simply adding locations to the end

• However, it can be managed if the data is kept in a file
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Hash Functions for Extendible Files
(continued)

• There are some hashing techniques that take into account 
variable sizes of tables or files

• These fall into two groups: directory and directoryless

• In directory schemes, a directory or index of keys controls 
access to the keys themselves

• There are a number of techniques that fall into this category
– Expandable hashing, developed by Gary D. Knott in 1971

– Dynamic hashing, developed by Per-Âke Larson in 1978

– Extendible hashing, developed by Ronald Fagin and others in 1979

• All of these distribute keys among buckets in similar ways

• The structure of the directory or index is the main difference

• Skipping details, see book for more
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