CS 395 Internship in Computer Science

“Collaborative Volume Visualization Using VTK”

Anastasia V. Mironova

University of Alaska Anchorage

Department of Mathematical Sciences

Anastasia_Mironova@hotmail.com

Overview of the Company
During the Spring semester of 2003 a proposal to investigate this problem was submitted to the office of the Alaska Experimental Program to Stimulate Competitive Research (EPSCoR). The project was able to receive funding for a period of three months: June through August of the year 2003.

EPSCoR is a university-based federal-state partnership that aims to enhance science and technology infrastructure – in education, in the private sector, and in related government programs. EPSCoR operates on the principle that aiding researchres and institutions in securing federal R&D funding will develop state’s research infrastructure and advance economic growth. The core of every state-centered EPSCoR program is a partnership with the National Science Foundation.

Alaska EPSCoR is a partnership devoted to growing Alaska’s scientific research capacity. The University of Alaska Fairbanks is the lead institution for Alaska EPSCoR programs, which are administered from doctoral campuses in all EPSCoR states. Alaska EPSCoR is funded by the National Science Foundation and by an in-state match for a three-year period. Alaska EPSCoR also awards from the National Institutes of Health and the Department of Defense. Their research investments are complemented by high school and university education programs, and cooperative initiatives with state agencies and the business community.

Overview of the Project

Collaborative Scientific Visualization Environment (CSVE) is a basic collaborative scientific visualization environment that was developed under a National Science Foundation (NSF) MRI grant and NSF REU Supplement to the grant, 0215583, during FY2002, primary investigator: Dr. Patrick O’Leary.

CSVE allows any group of scientists on a network sharing the same interface and visualizations to explore simulations of different scientific/natural processes, to interactively roam and zoom an array of time-dependent data, and to interact in other ways, e.g. using a chat utility, whiteboard, streaming audio, streaming media, or the graphics screen just as if sitting together in front of the same workstation. The core if this environment was implemented by Dr. Patrick O’Leary.

Building upon the collaborative visualization environment described above, the overall objective of the “Collaborative Volume Visualization Using VTK” project was to enhance visualization graphics capabilities of the described system by researching implemented additional three-dimensional scientific visualization techniques using the powerful Visualization Toolkit (VTK) graphics system for volume scalar and vector data sets, to expand acceptable data formats.

Planning Process for the Project

As it has already been outlined above, the main objective of the “Collaborative Volume Visualization Using VTK” project was the implementation of additional three-dimensional scientific visualization techniques using the powerful Visualization Toolkit (VTK) graphics system for volume scalar and vector data sets, to expand acceptable data formats.

In the previous version of the CSVE the graphics screen was capable of visualizing only files of type .3DS and communicating basic mouse events across the net, which allowed for rotation, translation, and enlargement or minimization of objects in the scene. During the timeframe of the “Collaborative Volume Visualization Using VTK” project it was planned to implement collaborative visualizations sharing of two more types of data formats: volume datasets constructed of 16 bit image files and PLOT3D formatted binary data using the techniques provided by the Visualization Toolkit. Each of these data sessions was to be supplied with a separate set of visualization tools. For volume dataset sessions the two primary visualization features to be implemented were user-customizable isosurfaces and cross sections of data. Binary data sessions were to support user-customizable computational planes as well as isosurfaces and cross section objects.

The key design points of the CSVE are based on applying both distributed objects and object-oriented byte stream data communication protocols. This suggested the following sequence of steps for implementation.

First, it was anticipated to implement the visualization tools for the volume dataset sessions separately from the main environment framework, then expand the set of data formats acceptable by the CSVE through modification of the existing administrative tools, and then adapt these initially implemented visualization techniques to connect in data generated by a colleague. The second type of data session was to be added using the same sequence of steps in case the amount of remaining time were sufficient.

Detailed Analysis and Design of the Solution, Including any Architectural or Block Diagrams, Description of the Implementation

CSVE is a client/ server network application developed using the Java programming language and the Visualization Toolkit.

The CSVE server allows scientists to administrate a scientific database that stores scientific data, user information, and session creation. Figure 1 outlines its basic design.

[image: image1.jpg]

Figure 1: The internal static architecture of the CSVE server.

The client provides a desktop with several internal frames that can be viewed as a workbench for collaborative scientific visualization. The internal frames make available collaborative visualization and other communication utilities, such as the chat utility, streaming audio and media, desktop capture, and whiteboard.

Synchronization between the clients occurs via communication between the threads on each of the clients’ ends and the server. There exists one client session thread for every user and a separate session thread on the server side for every session. The server also provides a Group object for every active session, which contains all the information about the current state of the session it has been created to support. The set of valid messages implemented for this type of communication is described in the “common/messages” package. All messages are divided into categories by means of inheritance according to the type of feature or package they support. The interpretation for every one is handled separately in each of the two types of session threads: the server SessionThread and the client SessionThread files. These make up the main part of the environment used to implement the visualization tools.

Information about the acts of every connected client performed on the visualization screen is being reported to the server where it is broadcasted to other users and/or gets stored in order to be able to provide newly connected users with updated version of the visualization scene. When a new client joins a session it receives a SessionJoinReplyMessage that contains the required information for such updates. Again, all these characteristics are conveniently extracted from an instance of the Group class of the session joined. It is important to mention that the Group class only stores the messages it receives and has almost no knowledge about their content; however, it is smart enough to get discard redundant messages.

The main contribution of the visualization package to the CSVE is the Visualization window that allows connected users in a single session to view visualizations of data and analysis collaboratively. The package containing the implementation for these features is called “visualization”. “Visualization” itself contains a set of classes that represent mostly the variations of VTK-provided actors that is possible to create in different data sessions. Besides these, the “visualization” package also contains two other packages called “io” and “gui”. The “io” package contains classes for reading and writing information about isosurface objects to files on the client’s system. The “gui” package contains classes that provide the code for the graphical user interface components used in the implementation of the graphics screen.

The visualizationFrame, which is of course part of the “gui” package, is an extension of the JFrame class and is an element of the client’s linked list of available tools in the entire CSVE. This linked list is represented with a set of buttons located on the main application tool bar of the client’s desktop. The visualizationFrame’s two primary functions are the following: first, to serve as a container for the graphics panel and, second, to maintain control over all other related GUI components implemented in the “visualization/gui” package.

The component responsible for displaying the actual visualizations is a class called VisualizationPanel, which is a part of the Visualization window, located just below the menu and the tool bars. VisualizationPanel is an extension of the vtkPanel class provided by the Visualization Toolkit and its primary functions are to contain all the information about the current state of the client’s visualization screen and communicate with the server. This class is the one of the most important parts of the package since this is what supplies the different visualizations. Each time the user switches between sessions the VisualizationPanel is also the class responsible for updating all any necessary parameters of the visualization setup to prepare for viewing different data. The VisualizationPanel class keeps track of the path to data files, the background of the scene, the outline object, maintains a set of lists (Vectors) of existing objects, such as: isosurfaces, cross sections, and computational planes depending on the type of the currently explored dataset.

A total of five different types of objects is supported. Each of these is available to the user depending upon the type of current data session. Specifically, there exist two types of isosurface objects: IsoSurfaceActors for volume data sessions and ColorIsosurfaceActors for PLOT3D-formatted binary data sessions; two types of cross section objects: CustomPlaneActor for volume data sessions and CutActor to represent a cut in a PLOT3D-formatted binary data session; and finally, the PLOT3D-formatted binary data sessions have ComputationalPlane actors as well. In order to make each of these objects available to the user and attempt to hide the complexity of the underlying code, at least two classes were necessary to support each of these types of objects. The function of the additional classes was to enable the clients to create these using a set of GUI components.

Now a more detailed picture of the implementation for each of the two introduced sessions is presented.

Collaborative visualizations using vtkVolume16reader
The dataset for this type of visualizations represents an ordered set of 16 bit image files stacked on top of each other to produce a three-dimensional scene. The Z-axes dimension of such dataset depends upon the number of files read. Consequently, reading a single file results in a 2D image, while reading more than one file results in a 3D volume.

The parameters for this type of session set by administrators are as follows: the number of files being explored, X-axis dimension, Y-axes dimension, byte order, file prefix, and spacing parameters.

The vtkVolume16Reader class used to interpret this type of data in this case creates structured point datasets.

The following volume visualization techniques have been implemented for this type of three-dimensional data viewing:

· Creating isosurface objects with custom parameters;

· Creating isosurface objects with preset properties and a custom contour value;

· Creating custom cross section objects of the volume data.

The process of creating custom isosurface objects has been supplied with a graphical user interface that enables the user to set and change parameters for objects of this nature. Specifically, these parameters are the following: contour value, RGB color, specular lighting, specular power, transparency, ambient parameter, and a name of the object. The function of most of these parameters is to collect a set of values sufficient to define an isosurface object in VTK. The user-provided name is used in the implementation for distinguishing between objects and is, consequently, the primary reference for displaying the list of existing object in the “ManageComponents” frame, which is described in more detail below. In order to provide the user with this feature, the total of four classes has been supplied: IsoSurfaceActor, used to represent the actual VTK-provided actor describing an isosurface object, CustomIsoSurfaceFrame, PresetSurfaceFrame, and EditCustomSurfaceFrame. The class IsoSurfaceActor is where each of these objects is created as VTK actors. CustomSurfaceFrame provides the basic and most detailed set of customizable parameters for creating these objects. EditCustomSurfaceFrame is the third GUI component supplied for managing isosurface objects It can only be activated from the ManageComponents frame on any existing isosurface object. The purpose of the PresetSurfaceFrame class is to also provide a GUI to generate isosurfaces, however, now with a smaller set of parameters. The more detailed description of this class is found below.

The interface for creating isosurfaces with preset parameters is the second GUI component (PresetIsoSurface class) introduced for creating isosurface objects and it requires the user to only select a contour value and type of desired isosurface. The options for the types of available isosurface objects are available via a combo box supplied in this frame. Each of these types is associated with a specific set of material properties of an isosurface object. The users are also enabled to append the basic set of available types with their own sets of values. This option is available from the custom isosurface graphical user interface window.

[image: image2.jpg]@ Visuaiization Frame

B create lsnsurface
Isosurmace Parameters

Isosurface location

L T —

[Provet wosutaces

Isosurface Paraneters
Pieset sunfaves

Spocular
Uighting [0:3 [power

Transparency [0 5 bt
Vame

Iscsurface type |BONE

Isosurface location

contour vane

|

Figure 2: Creating isosurface objects on a three-dimensional dataset of a human head and the GUI components for creating preset (left) and custom (right) isosurface objects.

Custom cross sections represent a color map on a rectangular object. Creation of such objects, as mentioned above, is another implemented tool of the CSVE. The cross section objects implemented in this version of the environment can be translated along the X, Y, and Z-axes, respectively. The following parameters are made user-customizable: cross section extent, scalar range values, color range, hue range, saturation range, and the name of the object. These parameters serve just the same purpose as the ones for isosurface objects.

[image: image3.jpg]| @ visualization Frame

[CreateCrass Section
Cross Soction Paramators

| chooso ervee sostion tma

o

Isasurface location

ross Section Location

Vaiwes
wanfo
coor

Rangs|

Front 1 [Fromfo wrrnm\g
T — S —

Name.

EYE

Figure 3: Custom cross section objects on a three-dimensional dataset of a human head and the GUI components for creating this type of objects.

Any of the above components along with the white box outline, once created, can be conveniently modified or completely removed from the scene in this type of session via the “Manage Components” frame that has also been added as a tool for working with three-dimensional data sets. The implementation of this frame required creating a relationship between the new GUI and the VisualizationPanel class. That is where the data about the current state of the graphics screen is retrieved.

[image: image4.jpg]82 Manage Companents & H

Isosurfaces Cross Sections
Bone [+] [axiat Cross Section
skin Saggital Cross Section
(Coranal Cross Section

[||| romove || nemovein || _conee

Figure 4: A sample “Manage Components” frame in a volume data session fo a human head displaying the names of five objects currently in the scene.

Collaborative visualizations using vtkPLOT3DReader

The basic format of files used by this type of session is binary.

The VTK class vtkPLOT3DReader is used as the primary interpretation tool for visualizing this type of data. VtkPLOT3DReader is a reader object that reads PLOT3D formatted files and generates a structured grid on output. PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics.

PLOT3D files consist of a grid file (also known as XYZ file), an optional solution file (also known as a Q file), and an optional function file that contains user created data. The Q file contains solution information as follows: the four parameters free stream mach number (Fsmach), angle of attack (Alpha), Reynolds number (Re), and total integration time (Time). In addition, the solution file contains the flow density (scalar), flow momentum (vector), and flow energy (scalar).

The reader can generate additional scalars and vectors (or "functions") from this information. To setup a vtkPLOT3DReader session, the implementation of this type of session requires an administrator to specify a particular scalar and vector functions to be used in the visualization. This VTK implementation of this reader class provides the following functions. The scalar functions are: density, pressure, temperature, enthalpy, internal energy, kinetic energy, velocity magnitude, stagnation energy, entropy, and swirl. The vector functions are: velocity, vorticity, momentum, and pressure gradient.

The following volume visualization techniques have been implemented for this type of three-dimensional data viewing:

· Creating colored isosurface objects with custom parameters;

· Creating custom cross section objects of the volume data;

· Creating custom computational planes.

The objects referred to as “color isosurfaces” are slightly different from the simple isosurfaces described above. These objects use the provided data files to create a color map that covers their surface. The process of creating custom colored isosurfaces has been supplied with a graphical interface as well. This enables the users to customize the following parameters of a colored isosurface object: the contour value or the isosurface, the color map, and the scalar range values. Since the time allowed for implementation of objects for this type of data session was not sufficient to implement the full set of parameters implemented in VTK, this list is by no means complete. The “Color Map Functions” combo box allows selecting one of the color maps supported by the Visualization Toolkit for this type of data: density, pressure, temperature, enthalpy, internal energy, kinetic energy, velocity magnitude, stagnation energy, entropy, and swirl.

[image: image5.jpg]@ visualization Frame

[create isosu... o @ [
sosurface Parameters

Location
Contour Value
Color Map Functions
| velocity Magnitude ~
Scalar Range
Minimum Value

Maximum Value [
Name.

s

|
Aoy || cancel

Figure 5: Custom colored isosurface object on a three-dimensional PLOT3D formatted data and the GUI components for creating this type of objects.

Just like in volume data sessions, the PLOT3D-formatted binary sessions are supplied with the possibility of creating user-customizable cross section objects as well. Implementation is, again, very similar to the approach in the volume sessions. The scalar function value set by an administrator for this type of session is at the moment the primary parameter in the process of creating user-customizable cross section objects. The other parameter available for customization is the location of cuts.

[image: image6.jpg]@ visualization Frame

o+ B

(5 create Custom Cross Section
| Calored Plane Parameters
Location

[|

2

ion |

|_apoy || cancet

Figure 5: A sample cross section object on a three-dimensional binary data session and the GUI components for creating this type of objects

Since the output produced by the vtkPLOT3DReader class in this case is a structured grid, it is possible to introduce a new type of visualization object for this type of session. The structured grid output enables us to extract a computational plane and allow the user to customize the extent, the color (RGB format), and wire frame or surface representation for this type of object.

[image: image7.jpg]@ Visualization Frame

Tools View

BEERIE

(57 Computationa Piane
Compitational Plane Parameters

Location
Height

Wiro Framo Reprosontation
(¥ View As Wit Frarne

Name

sampie com

| ooy

Figure 6: Custom computational plane object in a binary file session and the GUI components for creating this type of objects.

Just as well as there exists a Manage Components frame for the 16 bit image files, binary sessions have also been supplied with a similar interface. The Manage Components frame in a binary data session has similar functionalities and can be activated in the exactly the same manner as the one for the 16 bit image data sessions, only in this case the objects’ names are consequently sorted into three categories: computational planes, cross sections, and isosurface objects, see Figure 7.

Other features implemented in the Collaborative Scientific Visualization Environment under this project are less session-specific. Both of the new types of sessions have been supplied with a possibility to add and/or remove the white outline object created using the vtkOutlineFilter in 16 bit image volume data sessions and the vtkStructuredGridOutlineFilter in a binary data session. Both of these implementations are done in the class called BoxOutline. Finally, the background color as well as the color of the outline are both customizable in all three types of data sessions in order to enable the users to customize the color contrast between the observed data and background.

User's manual or screenshots of product

[image: image8.jpg]b

if# Participants Frame

Maderator: Joe

ool
[Brian Mullen
lanastasia Mironova

@ Visualization Fr:

Reguest Fioor

5 Manage Components
Cross Sections

Isosurfaces

ane | SampleCoranaiCrossSection

Skin SomplesalCrossSection
SampleSaggitalCrassSection

[|| romowe | remoresn

Figure 1: The CSVE illustrating a three-dimensional volume dataset of a human head inside the visualization frame with the primary application bar on top and two other graphical user interface frames showing the participants currently in the session (top) and visualization components present in the scene (bottom).
[image: image9.jpg]Sow

File Astions

[E]&(E] [s[]

Sessian || Adminishation

B CIE

@ Visualization Frame
Tools View

REEIE

4 Manage Components

Isosurfaces Cross Sections Computational Planes
[Kinetic energymap [~ [Sample cross section 4] Wwhite Computational Plane E

[|| romove || remove | conce

Figure 7: CSVE client user interface in a PLOT3D formatted data session displaying the main application bar (top), the visualization window (middle), and the Manage Components frame (bottom). The visualization window illustrates the three types of user-customizable objects available in this type of session. The names of these objects are shown in the Manage Components frame.

Analysis or discussion of completed project

The key design decisions in the CSVE and the visualization package as one of its primary components are:

· Exploring the application of both distributed objects and object-oriented byte stream data communication protocols. In addition, we are looking to determine which collaboration utilities require persistent connections, and which utilities are better served by non-persistent connections. For example, we are attempting to determine the best way to simply link displays on different workstations to the same data object to create a collaborative visualization. Similarly, we would like to link user interface components on different workstations to create collaborative control.

· Integrating collaborative capability into data filtering and mapping, rendering, and user interface components. Current systems provide pure collaboration tools that developers must themselves integrate with their systems, and support limited data.

· Integrating a user interface paradigm for database management for scientific visualization. The overall goal of scientific data management is to hide the complexity of the underlying technologies that allow scientist to store, retrieve and search data.

Conclusions and lessons learned from the internship process, what might make it better

The “Collaborative Volume Visualization Using VTK” project provided considerable enhancements to the functionality of the Collaborative Scientific Visualization Environment (CSVE). The CSVE is now capable of serving as a collaborative tool not only for viewing .3ds type files but also for exploring 16 bit image files, as well as PLOT3D formatted binary data. The two main tools implemented for visualizing 16-bit image files are customizable isosurface objects and cross section objects. Binary data sessions, on the other hand, have been supplied with user-customizable computational plane objects, cross sections, and color isosurfaces. The collaborative nature of these visualizations allows for any of the created components to be easily modified or deleted from the scene by any of the participants in a single session.

These enhancements make the CSVE a more powerful tool for collaborative visualizations. However, as the Java3D, OpenGL, and VTK graphic APIs mature, it is becoming possible to transform the collaboration scientific environment into a general-purpose tool.

For me personally, development of the visualization component of the Collaborative Scientific Visualization Environment has been a very valuable and fun experience. This was my first time writing a real research proposal, getting it funded, as well as applying for presenting at a prestigious international conference, getting my application accepted and getting funds for all that as well. I am really grateful for every single one of these miracles that happened to me this year.

Please see separate file for code listing.

