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Abstract 
 
Collaborative filtering has become a popular method for delivering recommendations to 
individuals on a wide range of items, most typically books, movies, music and news articles.  
The basic idea behind collaborative filtering is to automate word-of-mouth.  We all rely on 
friends and family to recommend books, movies and music to us; collaborative filtering aims to 
expand each person’s small network of friends to the greater realm of the Internet.  Collaborative 
filtering works by finding individuals with similar tastes, and making recommendations based on 
their likes and dislikes.  This relies on the idea that if two individuals have similar tastes on a 
number of items, they are likely to have similar tastes on other items as well.  However, there are 
a number of problems with typical collaborative filtering methods, which can lead to poor 
recommendations in many situations.  This paper presents a method of combining typical 
collaborative filtering techniques with content-based analysis of the items in order to provide 
accurate recommendations for a wide range of situations. 
 
1.0 Introduction 
 
Collaborative filtering has developed as a means to create accurate recommender systems.  
Recommender systems allow individuals to receive recommendations on a wide range of items, 
including books, movies, music and news articles.  Ratings data is collected from a large group 
of users for a given set of items.  These ratings can be collected either explicitly by asking a user 
to rate an item they are familiar with (on a 1-5 scale, for example), or implicitly by inferring a 
user’s likes and dislikes based on their behavior.  Many online stores, such as Amazon and 
Barnes & Noble, collect ratings implicitly; when a user buys an item, it is assumed that they like 
that item.  By comparing a user’s likes and dislikes to other users, groups of users with similar 
tastes are formed, called a neighborhood.  To determine the predicted rating of an item for a 
particular user, the (possibly weighted) average rating of that item is calculated from the user’s 
neighborhood. 
 
In the past, collaborative filtering systems have been able to produce accurate recommendations 
for a wide range of items.  However, several problems cannot be overcome by a typical 
collaborative filtering system: 
 

• Performance – The data set for a typ ical collaborative filtering system is prohibitively 
large.  Millions of users, each with possibly hundreds or thousands of ratings, cannot be 
exhaustively searched by any real-time system. 

 



• Sparsity of data – There are actually two problems at issue here.  First, there is the 
problem of a new item that has few (or no) ratings.  With pure collaborative filtering, an 
item must have many ratings in order to calculate an accurate average.  Second, there is 
the problem of a new user who has rated only a few (or no) items; this is known as the 
first-rater problem.  In order to calculate a user’s neighborhood, the user must have 
already rated a number of items.  Some recommender systems [9] have solved this 
problem by requiring users to rate a set number of items (usually around 20) before being 
able to receive recommendations.  While this is an effective solution to the problem, it is 
inconvenient for the user. 

 
• Comparing users – In order to calculate the similarity between users, they must share 

ratings of common items.  If they do not, there is no way of comparing the users and their 
calculated similarity will be zero.  An example illustrating this problem is given below in 
Table 1. 

 
 User 1 User 2 

Billy Madison 4   

Happy Gilmore   5 

Mr. Deeds   4 

50 First Dates 5   

Big Daddy   4 

Table 1: User profiles of movies rated 

 
Table 1 shows the profiles of two users, with the movies that each has rated on a 1-5 scale.  Since 
the two users have not rated any of the same items, a typical collaborative filtering system will 
not classify them as neighbors.  However, it is clear that both users enjoy Adam Sandler movies.  
Collaborative filtering alone cannot discover this similarity between the two users, and instead 
views them as having no similarity. 
 
A content-based approach to collaborative filtering is able to overcome these problems.  By 
analyzing the content information of an item, it is possible to deliver accurate recommendations 
for items with few ratings, and for users that have only rated a few items.  Additionally, it is 
possible to compare users that have no common ratings.  This paper will discuss a method of 
combining classic collaborative filtering techniques with content analysis of the items in order to 
deliver more robust and accurate recommendations to users.  Finally, this paper will discuss 
several strategies for improving the performance of the proposed methods. 
 
2.0 Data Source 
 
The effectiveness of the proposed method is demonstrated by a movie recommendation system.  
The rating data used for this system has been obtained from the EachMovie project [1].  Content 
information for each movie is obtained from the Internet Movie Database (IMDb) [2].  The 
following information for each movie is collected into a local database: actors, director, plot 
description and genre.   
 



2.1 EachMovie Dataset 
 
The EachMovie project was conducted by the Compaq Systems Research Center over an 18-
month period from 1996-97.  During this time, a large dataset of user-movie ratings was 
collected, consisting of 2,811,983 ratings for 1,628 movies from 72,916 users.  The dataset 
contains basic information for each movie, including title, genre, release year and the IMDb 
URL.  For each user, optional demographic information is provided such as age, gender and zip 
code; the demographic information is not used by this system.  Finally, the dataset contains the 
movie rating data for each user.  The ratings are given on a one-to-five scale.  A rating of one 
represents the lowest possible score for a movie, while a rating of five is the highest. 
 
For the purposes of this study, the ratings are converted to either a positive or a negative rating.  
A rating between three and five is considered positive, while a rating of one or two is considered 
negative.  When the predicted ratings are generated, they are calculated simply as a positive or a 
negative rating.   
 
Unlike other systems that use only a subset of this data [3], the entire dataset is used for testing 
the effectiveness of this system.  The ratings data is randomly split into a training and test set; the 
training set contains approximately 75 percent of the ratings, while the test set contains the 
remaining 25 percent. 
 
2.2 Internet Movie Database 
 
The content information for each movie is collected from the Internet Movie Database (IMDb).  
Information for each movie, such as actors, director, plot summary and genre, are gathered and 
entered into a local database.  This data is provided in tab-delimited text files, which are parsed 
to collect this information for each movie from the EachMovie dataset.   
 
2.3 Creating the Feature List 
 
Once the content information is gathered, a feature list is constructed in the form of a bag-of-
words; common words with little contextual information (i.e.: the, and, but) are thrown out.  For 
the remaining words, the frequency of each is calculated, and any words with a low frequency 
(only one occurrence) are also thrown out.  An example of this bag-of-words representation is 
shown below in Table 2 for the movie Goldeneye. 
 

Goldeneye    

  satellite 2 destroy 2 

  xenia 3 london 2 

  thriller 2 villain 2 

  simon 4 revenge 2 

Table 2: Bag-of-words representation of movie content information 

 



Before a movie’s content information is added to the local database, the frequency of each word 
is weighted based on the total number of terms in the bag-of-words. 
 
Each user is assigned two feature lists, one for the movies they have rated positively, and another 
for the movies they have rated negatively.  For each movie that a user has rated positively, the 
feature list of that movie is added to the user’s positive feature list.  Similarly, the feature list for 
each movie a user has rated negatively is added to the user’s negative feature list.   
 
3.0 Methodology 
 
It is possible to overcome many of the limitations of collaborative filtering methods by 
combining them with content-based analysis.  However, overall system performance remains 
problematic.  Three methods are attempted by this study with the aim of addressing this problem.  
The first two attempt to improve performance by reducing the search space.  The third 
circumvents collaborative filtering methods altogether by making purely content-based 
predictions. 
 
3.1 Clustering of Users 
 
It is possible to reduce the search space significantly by pre-processing the ratings data in order 
to cluster users into smaller, more manageable groups.  When the predictions are to be made, the 
system must only analyze a user’s cluster group, instead of the entire data set.  Clustering of 
users (and/or items) has been implemented by several collaborative filtering systems [5,6] as a 
method of improving performance. 
 
For this study, a relatively simple clustering algorithm was devised: 

1. Compare the current user to each of the existing clusters (if any) using the Pearson 
Correlation Coefficient [7]. 

2. If the similarity between the user and a cluster is above a pre-defined threshold, merge 
the user into that cluster. 

3. Compare the current user to each of the other users using the Pearson Correlation 
Coefficient. 

4. If the similarity between users is above a pre-defined threshold, create a new cluster from 
the users. 

5. If the similarity threshold is never exceeded, create a new cluster with the user having the 
greatest correlation. 

6. Repeat steps 1-5 until all users have been clustered. 
 
It is important to note that with this content-based approach, the terms found in a user’s feature 
list (or the feature list of a cluster) are what is being used to compute the Pearson Correlation 
Coefficient.  The feature list of a cluster is comprehensive of the feature lists of all its users. 
 
Obviously, this is not the most efficient solution possible; the worst-case runtime is O(n2).  
However, it is not necessary for this algorithm to be run every time a new rating is added; small 
changes in the rating data should not affect the structure of the clusters greatly.  Instead, the 
algorithm could be run on a nightly basis to reorganize the clusters.  Furthermore, the focus of 



this study is not the development of an efficient clustering algorithm.  Thus, the described 
algorithm is sufficient for the implementation of this system. 
 
3.1.1 Making Predictions 
 
Once the cluster groups are formed, the system must only search a user’s cluster group in order 
to make predic tions for that user.  From a user’s cluster group, their 10-nearest neighbors (called 
their neighborhood) are calculated, again using the Pearson Correlation Coefficient.  The 
predicted rating for a particular item is the average rating of that item from the user’s 
neighborhood. 
 
3.2 Selecting a Random Group 
 
A simpler method for reducing the search space is to select a random group of users that will 
serve as a (hopefully) representative sample of the entire set of users.  For this study, 5000 users 
are randomly selected to serve as the sample group.  A new random group is generated to make 
predictions for each user. 
 
This is a much simpler and easier method to implement than was the clustering of users.  The 
questions that remain are how representative a sample of 5000 random users will be, and how 
accurate of predictions is that group able to produce? 
 
3.2.1 Making Predictions 
 
Once a random group of users is selected, the method of prediction is identical to that used with 
the cluster groups.  From a user’s random group, their 10-nearest neighbors are calculated, and 
the predicted rating for a particular item is the average rating of that item from the user’s 
neighborhood. 
 
3.3 Content-Based Predictions 
 
The final method of prediction is the most simple of the three.  By completely circumventing the 
methods of collaborative filtering, predicted ratings are made by simply analyzing the content 
information of the items a user has rated.  Just as we had previously compared feature lists 
between users, it is also possible to compare the feature list of a user directly to the feature list of 
an item. 
 
Remember that each user has both a positive and a negative feature list.  Each of these feature 
lists is compared to the feature list of the item using the Pearson Correlation Coefficient.  If the 
user’s positive feature list has a higher correlation with the item’s feature list, the system predicts 
a positive rating.  Likewise, the system predicts a negative rating if the negative feature list is 
more highly correlated. 
 
 
 
 



4.0 Experimental Results 
 
Once the predicted ratings were made by each of the three described methods, those predictions 
were analyzed to assess the quality of the prediction method. 
 
4.1 Metrics 
 
For each of the prediction methods, three metrics were calculated to analyze the quality of the 
predictions: accuracy, precision and recall.  Accuracy is an overall measure of the number of 
correct predictions made, both positive and negative.  Precision is defined as the number of 
correct positive predictions divided by the number of correct and incorrect positive predictions.  
Finally, recall is a measure of how well the system is able to generalize.  If the system simply 
memorizes the training set, it would be unable to generalize very well, and will not produce good 
predictions for the test set.  The recall in this case would be very low.  It is important to note that 
precision and recall have an inverse relationship; it is possible to do very well in one or the other, 
but not both.  The desired result is to find a middle ground, where both precision and recall are 
reasonably good, but neither is outstanding. 
 
In order to calculate the three metrics, the predicted rating was compared to the actual rating for 
each of the ratings in the test set.  The actual calculations used to determine accuracy, precision 
and recall are shown below in Figure 1. 
 

Accuracy = (TP + TN) / (TN + TP + FN + FP) 
Precision = TP / (TP + FP) 
Recall = TP / (TP + FN) 
 
TP: number of true positive predictions 
TN: number of true negative predictions 
FP: number of false positive predictions 
FN: number of false negative predictions 

Figure 1: Calculations for accuracy, precision and recall 

 
4.2 Results 
 
The results of these experiments are summarized below in Figure 2.  As can be seen, the user 
clustering method performed higher than the other methods on all three metrics.  Each of the 
other two methods produced very similar results, with the random user groups performing 
slightly better than the purely content-based predictions. 
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Figure 2: Comparison of algorithm results  

 
5.0 Discussion 
 
As was expected, the method of clustering users resulted in the greatest performance.  Of the 
three, this method produced the highest levels of accuracy, precision and recall.  However, a 
large amount of pre-processing of the ratings data is required to generate the clusters of users.  
For this reason, this method may not be appropriate for all applications. 
 
While simpler to implement, the other two methods each produced reasonably high levels of 
accuracy, precision and recall to make them viable choices.  Very little pre-processing is required 
for either of these methods, and their run-time requirements are much more in line with a real-
time system.  No matter which of the three methods is most appropriate for a specific 
application, each of them overcomes the problem of system performance. 
 
This content-based approach to collaborative filtering is successfully able to overcome the 
difficulties outlined in section 1.0.  A user that has rated only a few items is able to receive 
recommendations based on their feature list.  A user must only rate one or two items in order for 
them to have a usable feature list.  Additionally, it is now possible to give recommendations for 
an item that has only a few ratings.  Instead of making predictions based on the ratings that an 
item has already received, the prediction is made by comparing the feature lists of the user 
directly to the feature list of the item.  Finally, it is possible to compare users that have no 
common ratings, allowing the system to discover meaningful relationships between users that 
would not have otherwise been known.  This also allows all users to be considered as potential 
neighbors, thus increasing the chances of finding similar users. 
 
 
 
 



6.0 Future Work 
 
There is still a great deal of work that can be done to improve upon this content-based approach 
to collaborative filtering.  As mentioned in section 3.1, the efficiency of the clustering algorithm 
used by this study could be greatly improved.  There are a number of efficient clustering 
algorithms that could be used instead, such as k-means or hierarchical clustering.  Additionally, a 
more complex hybrid of collaborative filtering and content-based analysis could be developed to 
improve the predictions.  A method proposed by [3] produces pseudo ratings by purely content-
based means to create a dense ratings matrix.  It then uses the combination of actual ratings and 
pseudo ratings to compare users.  This approach eliminates the need for users to have co-rated 
items to be considered neighbors. 
 
There exist many appropriate applications of recommender systems; this study has demonstrated 
that a content-based approach to collaborative filtering is a superior method for delivering such 
recommendations.   
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