ProCol

A jEdit Plugin for Online Project Collaboration

CS470 Final Report
Justin Dieters
Spring, 2004

Table of Contents

1.0 Introduction

2.0 Project Overview

2.1 Project Purpose

2.2 ProCol Services

2.3 Development Priorities

3.0 Project Requirements

3.1 General Goals and Requirements
3.2 Client Requirements

3.3 Server Requirements

4.0 System Design

4.1 Client Architecture

4.2 Server Architecture

4.3 Client-Server Communication

4.3.1 Communication Overview

4.3.2 Communication Protocol

4.4 Graphical Interface

5.0 Development Process

6.0 Results

6.1 What Worked?

6.2 What Did Not Work?

6.3 Was the Project Successful?

7.0 Conclusion

7.1 What Did I Learn?

8.0 References

8.1 Other Contributors

8.2 Documents Referenced

8.2.1 Websites

8.2.2 Books

9.0 Other Documentation

2 of 20

R w

()Rl INS) IS |

10
10
10
12

14

16
16
17
17

18
18

19
19
19
19
19

20

1.0 Introduction

ProCol is a project collaboration plugin for the jEdit text editor. The client operates
through jEdit's plugin capability, using jEdit as a full-featured development
environment. The server is able to be run from within jEdit as a plugin, or from the
command line as a standalone server. This allows the server to be easily run on a
developer's workstation, or on a standalone server machine. Configuration of the
server and projects is done via properties files, which are able to be used with Java's
Properties class.

30of 20

2.0 Project Overview
2.1 Project Purpose

The target users for the ProCol plugin are small groups of programmers, from two to
ten people, who are working together on a small to medium-sized project. It provides
a common file repository, from which users are able to check out files for use. It also
provides several communication and project management tools.

Current solutions to facilitate online collaboration between programmers, such as
CVS, SourceForge, and gForge are often too complex to set up and too time-
consuming to maintain for small projects that are being developed by a small number
of users. ProCol is designed to provide a quick and easy set-up for short projects,
while at the same time, providing enough functionality to be used over the full life of
longer projects.

2.2 ProCol Services

ProCol provides several services to it's users. First and foremost, it provides a file
repository with checkout functionality so that several people can work on the same
project together without having to worry about changes by one user being overwritten
by another user's changes to the same file. This includes versioning and changelog
support. Secondly, it provides communication tools in the form of public and private
messaging, and project management tools in the form of a todo list and a bug list.

2.3 Development Priorities

ProCol was developed with several priorities in mind. Usable file checkout
functionality was of first and foremost importance. Private messaging, public
messaging, todo list, and the bug list were also very important, however advanced
functionality of these features was not implemented due to time constraints.

The software was developed with future development plans taken into consideration.
Advanced functionality such as calendar and scheduling, concurrent editing, and web
access for public viewing of the project are all highly desirable functions, but were not
implemented for this class due to time constraints. Instead, the focus of the initial
design and implementation was on creating a product with a solid framework and
essential functionality implemented first, but the plan for additional functionality
taken into consideration during the design.

4 of 20

3.0 Project Requirements

Since this this software was not built for a specific customer, there were no definite
project requirements. Therefore, project requirements were developed by looking at
existing solutions, at possible improvements to these solutions, and from my own
experience with working with alternate solutions to the problems ProCol addresses.

Since the scope of this project was fairly large, the goal of the design and development
of this software for this class was to bring the software to a level where it has the
features and stability required for an initial version to be released and for
development continued as an open source software project.

ProCol is made up of two major parts — the client and the server. Both the client and
the server have their own unique requirements. There were also some general goals of
the project, which helped define the direction the software development should take
and what was important for the software to accomplish to be considered successful..

3.1 General Goals and Requirements

Facilitate and encourage group collaboration on software programming
projects over a local network and the Internet.

Provide a complete and useful set of project development and communication
tools to the developers.

The client and server should both be portable, and able to run on many
architectures. Main development was done on Linux, with additional testing
on Windows XP, Windows 98, and Apple OS X.

The programming language used is Java. Java 1.4.2 and Java 1.5.0-beta were
used for the main development and testing environments, however
compatibility with all 1.4.x or higher versions of Java was maintained. Specific
features in jEdit 4.2 and ProCol both require Java 1.4.0 or higher to run,
therefore compatibility with older versions of Java is not supported.

This plugin requires jEdit 4.2 or higher. The plugin API has changed
dramatically from jEdit 4.1 to 4.2 in order to support dynamic loading of
plugins. The ProCol plugin takes advantage of this dynamic loading support,
so it is not compatible with older versions of jEdit. At the time of this writing,
the most currently released version is jEdit 4.2prell. The estimated release
date for jEdit 4.2final is at the end of May, 2004.

jEdit does not have any official minimum system requirements, however the
estimated recommended specifications for running jEdit with ProCol are a 233
Mhz Pentium II processor (or equivalent) with 96 MB of RAM. (Note, this may
be higher depending on operating system requirements).

50f 20

3.2 Client Requirements

- Users are able to connect to the server, select a project to work on, check out
files, etc., all from the jEdit plugin interface.

The plugin interface is compact and simple, and able to integrate well with the
jEdit interface. Complex functionality is in the form of dialog windows
separate from the main plugin interface.

- Common functions are quickly accessible from the plugin interface through
the use of buttons. Less-used functions are put into drop-down menu items
or context menus.

- The client maintains a tree of files which are able to be checked out. The tree
indicates via bold text which files are currently checked out.

- The client is able to download copies of individual files or an entire tree
snapshot without checking out the files.

- The client maintains a user list containing all the users currently logged in to
the server. There are also be buttons representing the communication
functionality of the server. These buttons 'light-up' in color when there is an
unread message for the user.

- The client has a progress bar to indicate network activity. This is used in an
indeterminate mode when the client is waiting for a response from the server,
or a determinate mode when downloading data from the server.

- jEdit provides functionality for docking a plugin to the side, top, or bottom of
the jEdit window. ProCol's user interface is designed to take advantage of
this where applicable.

3.3 Server Requirements

The server is able to run both in a command-line interface, in the case of
servers without graphical capabilities, or from within jEdit, with output being
displayed in a dockable status window.

- The server is able to be set up to allow a predefined set of users and passwords
in order to preserve security of the project.

- Administration of the server is done by editing properties files, which define
settings and are readable by the Java Properties class.

6 of 20

4.0 System Design

jEdit has some requirements for plugin design which had to be taken into
consideration when designing ProCol. These requirements include interaction
between the plugin interface and the rest of jEdit, implementing jEdit standards for
the plugin interface and usage, and integrating user-selectable options, preferences,
and help system with jEdit. However, overall the design of the plugin is largely
separate from jEdit's requirements, so this did not present any major problems.

7 of 20

4.1 Client Architecture

The client is composed of three major parts: user interface, model, and networking
facilities. The user interface shows the data on the screen. This includes the main
ProCol window, showing the project files, user list, and various buttons. It also
includes the various dialog windows, and windows which are displayed within jEdit's
interface, such as the plugin options and the help interface.

The model section contains all the data used by the plugin. This includes the file tree,
user list, messages, etc. The model and user interface communicate with each other
using an observer pattern. The model contains all the data for the current session
(project information, messages, etc.). The model can notify the interface of changes to
itself, so the interface can update its representation of the information. jEdit allows
the graphical interface to be unloaded and reloaded (either the client or jEdit's entire
graphical interface), therefore the client can also query the model when it needs to be
refreshed.

The networking section is the part of the client that communicates with the server. It
handles messages received from the server, and creates messages and packets to send
to the server and handled when received from the server. The networking section
communicates with the model to send messages to the server, and update the client's
model.

A ¢ U — 7 T Nodel T T T
| | Dockable Windows | | | | Project | |
| |

| | Message Composers | |<—>| | User | |
| | Misc. Dialogs | | | | Messages | |
N ———————— o ——— |

Sections communicate using

Observer! Observable pattern

| " 7 " Network ____l
| | ProColClient |
Communicationl | Communication
from Server to Server
1 hl IncomingMessageHandler | |Out oingMessa eHandIeri |
|
|
| | MessageFactory | | PacketFactory | |
|

Figure 1 — Client Architecture Diagram

8of 20

4.2 Server Architecture

The server is also composed of the same three major parts as the client — user
interface, model, and network. Currently, the user interface is limited to displaying
output of the server as it is running.

The model of the server contains all the information for all the projects hosted on the
server. This includes the files, user messages, todo and bug lists, etc. The server will
store information about projects on the server hard drive in a customized format.
Since one of the goals of ProCol is to depend on as few external programs as possible,
and be as quick and easy to set up and use as possible, it will not utilize a database
such as MySQL for data storage.

The networking part of the server maintains the connections and communication to
and from all the clients. It communicates with the model to get information from it or
update it based on requests from the clients.

- T T TNbddl T T |
| | Projects
| | Users
. — — — — — — —_— —_—
ServerConnection

e T maintains reference to
r ProColServer 1 .
i gy ey T currently opened project

______ “Network ™~ — I

| ServerConnection

Communication
to Client

|

Communication |
>| IncomingMessageHandler | |Out ocingMessa eHandIeri | -

|

|

|

from Client

| MessageFactory | | PacketFactory |

Figure 2 — Server Architecture Diagram

9of 20

4.3 Client-Server Communication
4.3.1 Communication Overview

Network communication is a major part of the ProCol plugin. Networking is handled
by several threads. There is a thread that watches for incoming connections, which
then passes it off to a ServerConnection which contains a IncomingMessageHandler.
There is also an ErrorHandler, so error messages are handled separately from the
regular messages. This is mostly to separate and organize messages. This
multithreaded design allows for concurrent connections to be handled efficiently.

When a client connects to the server, they first must authenticate with the server by
logging in as a user. A client may only work with a project after being authenticated.

ProCol also utilizes anonymous SSL sockets for communication. This provides a quick
and easy way to provide a moderate level of security for network transactions between
the client and the server.

4.3.2 Communication Protocol

ProCol uses a custom network communication protocol that consists of a small
header, and an optional data section. The default packet size is 2048 bytes. This may
be set to any value (greater than the header size) on the server. Recommended sizes
are between 1024 bytes and 8192 bytes, depending on the connection speed between
the client and the server

Header (16 bytes) Data (0 to 2032 bytes)
g - o3 g
messagelD | requestType | dataRemain dataSize Data Section
e B

Packet (2048 bytes max)
Figure 3 — ProCol Packet Diagram

The size of the header is fixed at 16 bytes, broken into four 4-byte ints.

The first header section contains the message ID, a unique identifier given to the
message by the sender. This message ID is used to identify packets which belong to
the same message.

The second header section contains the request code. The expected format for data

section of the packet is dependent on the request code, and is defined with the request
code in the ProCol API documentation for the RequestType class.

10 of 20

The third header section contains the data size that follows. This number can be any
number from 0 (indicating there is no data with the packet) to MAX_PACKET_SIZE-
HEADER_SIZE (indicating a full data section).

The last header section contains the number of bytes remaining in the message's data
section, including the bytes in the current packet. In the case of a message that only
requires one packet, or for the last packet in a message sequence, this number will be
the same as the data size section.

Following this is the data section. The size of the data section can be any amount from
0 bytes to the remainder of the packet size. In the case of a 2048 byte packet with a 16
byte header, the maximum data section size is 2032 bytes. The particular format of a
data section varies by request type. If the data size is equal to the maximum data size,
the packet is part of a multi-packet message. If the data size is less than the maximum
data size, then the packet is the last packet for the message series. If a message's data
causes the last packet to be exactly the maximum data size, an additional packet with
an empty data section will be sent to direct the client to terminate the message series.

Since ProCol communicates over TCP, packets are guaranteed to come in order.
However, the messagelD is needed because messages may be interrupted to send
higher-priority messages, and these messages must be able to be distinguished from
each other. By default, there are three priorities: low, normal, and high, and the order
packets are sent in are determined by the server or client that is sending the packets.

11 of 20

4.4 Graphical Interface

Prototyping was used to develop all of the non-trivial
graphical interface windows. Mock-ups were drawn
on a whiteboard and design ideas worked out using
NetBeans before the final interface was developed in
jEdit. Since I had a clear idea of what I wanted the
interface to look like, and because of my use of
prototyping, I did not have to make many
modifications to the interface components once they
were created.

Figure 4 shows the final interface developed for the
ProCol client. At the top are the client control
buttons. Next is the project file tree and the file
check-out and check-in buttons. Below this is the
user list and communication buttons.
Communication button icons are displayed black-
and-while when there are no new messages, colorized
icons indicate that new messages are available. Below
this is the progress bar.

Figure 5 shows a typical jEdit session, with the ProCol
interface docked to the right-hand side of the window
and the Bug List docked to the top of the window.

Figure 6 shows the private message dialog, which is
typical for the communication and project
management dialogs.

Figure 7 shows the bug item composer. This was a
particularly complex dialog, and relied heavily on
prototyping to get the layout set before final
implementation.

12 of 20

=

2|

ProCol Client

0

£ 3.0 °20

ProCol

o= 3 help
- [=3 srt

| »

? com
7 [enderak
¢] procal
& [client
o= [gui
9 model
D Bugltem.ja
[Ty PrivateMes
[y Procalciien
[7y Procalclien
D PublicMess
[y Todomerm
o= [net
o= 7 il
o [cammion
o= [graphics
o= [server
D procal.manifest

[y Procg Check out
[y Procg Download Copy..

D ProCH Fename. ..
Dejate

Mew file. .

Mewr directony..,
Upload file. .
Upload directony...

Encerak,

File Info

B

2

Figure 4 — ProCol GUI

File Edit Folcing Eie Ltilities
|x |VI Bug List || Private M essages || Fublic Messages H Todo List ‘

; Description

Search Markers Macros

FPlugins

Help

* Bug Reports

o

Qhsaners not removed ;0 Due; 0408704 12:00:00

Upload and Checking errar & Due: Nane

Problem downloading copy © Due: Maone i
B& |Tree not sorted @ Due: Mone Priority: 5
Complete: 0%

Observers not removed
Assigned to; EnderAK

Due: 04/0% /04 13:00:00

Whern closing a comrmunication panel |4

ProCal
[o [help
i e [sre
= | e T test dir
1) ™) actions.xmi
| [build=win.xml
[build.xmi
D dockables. xml

[hs_err_pidz24.10g

|v [Procol.props

|1ua!|3 103044 || 135M0JE Wa1sAS 3|14 I 4 | x|

1]

B build.xml (fhomefenderak) procolfclient fprojects fProColffiles)
L<?xml version="1,0"7:=. = [test file
). : o)
3|<project name="ProCol” default="dist" basedir="."> [0 this is new file
4
3 <property name="jedit.install.dir" walue="/usr/local/share/jedit/4.2pred" >,
{5 <property hame="jar.name" walue="Frolol.jar"/ =
7 A =
8 <property name="src.dir" value="src" />,
9 <property nam build.dir" walu L1 G RE R
10 <property name="docs.dir” value="help/javadoc” A,
i1 A
1z <property name="install.dir" walue="/homnesenderak, jeditdars/ "/ >. F=
131, = ot
1) R |
15 <path id="project.class.path"s».
16 <pathelement location="${jedit.install.dir}/Jedit.jar"/>. Users
17 <pathelement location="."/ .
18 et Enderak
1af
20
z1 <target name="compile"s.
i <mkdir dir="${build.dir}" /=,
23 <javac.
24 srcdir="$§{src.dir}".
25 destdir="%{build.dir}".
26 deprecation="on". :
27 includelavaRuntines="yes">. :
23 <classpath refid="project.class.path"/>. - Il
Bl E

® |v I Activity Log || Console || Error List || Hyparsearch Results || |IRC || FroCol Server Log || QuickMotepad |

1,1 Top

(xml none, ANSI_XE . 4-1968)- - - -1 8:50 PM|

Figure 5 — ProCol components docked in jEdit window

Meszsage

Hello
From: EnderAK
04,/07 /04 20:40:24

How are vou?

Private Messages
Q4107704 20:40:24 2 "Hello" from Enderalk
0404704 16:43:22 : "Test Message" from

ERCED

4 i I [¥

Subject

[Mew Bug |

Due
[4/7/04 g:45 M

1 one

Priarity % Complete

[* {_} 1 b
0 5 Yo | 50 100
Assign Description

Enderal. This is a new hug
Laptop

Cancel

Figure 6 — Private Message Dialog

13 of 20

Figure 7 — Bug Item Composer

5.0 Development Process

Due to the short development time and large amount of work needed to bring this
software to a usable level, the majority of time was spent in the actual implementation
and testing of the software. The estimated time to be spent on the project is shown in
the chart, Figure 8. Since much of the requirements, design, and prototyping was
already completed in anticipation of this project, the numbers in the chart reflect the
amount of work done during the duration of the semester, and does not take into
account previous work.

(o)
5.00% >"20% 5 00%

10.00%

[l Requirements
Il Design
[JImplementation
[]Testing

Il Writeup

[Presentation

25.00%

50.00%

Figure 8 — Estimated Time Spent

Time dedicated to this project varied from week to week, but on average was about 2
hours per weekday and 8 hours per day on the weekend, for a total of approximately
26 hours per week, on average. The estimated total time spent designing,
implementing, testing, and documenting this project is about 350 hours.

14 of 20

Jan | Feb Mar Apr

Planning Project start
2004 Jan 12

Design

Design Document

Proposal Presentation

Basic User Interface

Metworking Base

Client-server communication

Main Features

Misc Features

User options

Testing and Revisions

Code Cleanup and documentation

Setup and Final Packaging

Final Writeup I

Final Presentation |
Figure 9 - Approximate Schedule

Figure 9 shows the schedule I set at the beginning of the semester. I was able to stick
to the schedule fairly closely, though some tasks did take slightly shorter or longer, and
some tasks were done in a more concurrent fashion instead of one after the other.

15 of 20

6.0 Results
6.1 What Worked?

[spent a large percentage of the development time working on the network
communication between the client and the server. I used packets and priority queues
to allow low-priority messages to be interrupted to send high-priority messages.
Anonymous SSL security was used to encrypt network transmissions, so protect
information such as passwords and source files to be intercepted by a third party.
Anonymous SSL is still vulnerable to the “man-in-the-middle” attack if the third party
intercepts the public key as it is first transmitted to the authorized person, however it
provides a good level of security without having to store keys with a third-party
certification authority.

Also on the topic of networking, there were several problems that came up
communicating between Windows and Linux systems due to the different
representation of files on disk. This was fixed by using URI's to represent the files
when that information was transferred over the network. URI's were something I had
not used before, but they proved to be very useful with respect to the network
communication.

Secondly, jEdit's dockable windows were used heavily to provide a plugin that
integrates well with jEdit. All major windows have the ability to be used as normal
windows or to be docked within jEdit. Graphical components also configure
themselves appropriately depending on if they are docked on the sides (vertically) or
on the top or bottom (horizontally).

Lastly, jEdit makes heavy use of the Java Properties class to store settings and program
information such as error messages and label text. I did this with ProCol as well, for
everything from labels and buttons on the Client to storing messages and changelogs
on the server. Java uses hash tables for working with Properties files, so the access
time in searching for items is quite fast even for large sets of data. Making use of
Properties files on the server for project information also alleviated the need to utilize
a database, such as MySQL, which makes setting up the Server much easier, which
was one of the goals set out for the server at the beginning of this project.

16 of 20

6.2 What Did Not Work?

Soon after starting, I decided that I wanted to use Java's new I/0O (NIO) API for
networking. This seemed to be good in theory, but it seems that it is badly
implemented by Sun at this point. There were many problems that I encountered that
ended up being problems in Sun's code, and I was unable to work around many
problems. Unfortunately, this resulted in approximately 2 weeks being wasted with
trying to troubleshoot and rewriting code. Eventually, I had to rewrite large portions
of code in order to revert back to using Java's classic networking.

One problem that [knew I was going to have from the onset was that I wanted to
implement too many features, and I would not have enough time during the class to
complete everything. Knowing this, I cut many features out while making my
requirements. In the end, all my required features were implemented, but some
ended up being rather basic.

6.3 Was the Project Successful?

There were several things that I considered when deciding if this project was
successful or not. These included having a usable software program that satisfied all
requirements.

I consider this project to be successful, because all requirements were satisfied and
the program proved to be usable during testing. In addition, there has been lots of
interest expressed by the jEdit community, and they are looking forward to seeing it
when it is released. ProCol will be released under the GPL and development may be
continued in the future.

17 of 20

7.0 Conclusion

The program I developed is a plugin for the Java-based jEdit text editor that facilitates
network communication between users for collaborative project development. It was
developed in Java with the goal of simplifying user collaboration for small to medium-
sized projects.

7.1 What Did I Learn?

I learned several new things about programming in the process of developing this
software. Ilearned about several areas of Java that I had little or no experience in
before, including SSL, New IO (NIO), Threading, the Java Properties class, and using
URI's to reference files in a cross-platform networked environment. I also learned
many new techniques for the design and implementation of graphical interfaces using
Swing.

[was able to make use of several design patterns that I had not used extensively
before. These include using observers and observables to pass information around
the different parts of the program. I also used a Model-View-Controller (MVC) design
for the client plugin. Lastly, I made significant use of Factories for networking in both
the client and server.

In working with jEdit, I learned a lot about programming a plugin, something I had
never done before. In addition, I learned a bit about Beanshell programming, the
scripting language jEdit uses. Also, I learned how to use Apache Ant to automate
compiling and packaging a program. Apache Ant is used by jEdit and most plugins in
order to automate build the code from source.

18 of 20

8.0 References
8.1 Other Contributors

ProCol was developed in whole by myself, however several members of the jEdit
community gave me guidance with respect to building a jEdit plugin. In particular,
the main developer of jEdit, Slava Pestov, gave me much guidance on how to properly
interface ProCol with the jEdit plugin API. In addition, he has made several fixes and
enhancements to jEdit itself that came up during the development of ProCol. The end
result of this was that both ProCol and jEdit were able to be developed into better
software than they would be otherwise.

8.2 Documents Referenced
8.2.1 Websites

Pestov, Slava & Gellene, John. jEdit User's Guide — Writing Plugins,
http://www.jedit.org/users-guide/writing-plugins-part.html

Pestov, Slava. What's New in jEdit 4.2,
http://www.jedit.org/42docs/news42/index.html

Pestov, Slava, et al. jEdit 4.2 API Documentation,
http://www.jedit.org/42docs/api/index.html

Sun Microsystems, Inc. Java 1.4.2 API Documentation,
http://java.sun.com/j2se/1.4.2/docs/api/

Sun Microsystems, Inc. Java 1.5.0 API Documentation,
http://java.sun.com/j2se/1.5.0/docs/api/

Sun Microsystems, Inc. Java Secure Socket Extension Reference Guide,
http://java.sun.com/j2se/1.4.2/docs/guide/security/jsse/]SSERefGuide.html

8.2.2 Books

Cooper, James W. Java Design Patterns: A Tutorial. Addison Wesley, January 2000.
Harold, Elliotte Rusty. Java Network Programming, 2" Ed.. O'Reilly, August 2000.
Hitchens, Ron. Java NIO. O'Reilly, August 2002.

Oaks, Scott. Java Security, 2" Ed.. O'Reilly, May 2001.

19 of 20

9.0 Other Documentation

There is other documentation for ProCol available online or included with ProCol.
This includes the User Guides for the Client and the Server as well as the ProCol API
documentation.

To open the help interface for ProCol from within jEdit, click on the help button in the
top button bar of the ProCol Client window. This will display jEdit's help interface and
load the ProCol help pages. Alternatively, you may go to Hel p>j Edi t Hel p in the jEdit
menu bar, or press F1, to load the jEdit help, and then select PI ugi ns>ProCol in the
contents tree.

For the latest information, downloads, and documentation, please see the ProCol
homepage at http://www.enderak.com/procol/

20 of 20

